{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# PyOR Quantum\n", "## Author: Vineeth Thalakottoor\n", "## Introduction to powder average Dipole" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Define the source path\n", "SourcePath = '/media/HD2/Vineeth/PostDoc_Simulations/Github/PyOR_V1/PyOR_Combined/PyOR/Source_Doc'\n", "\n", "# Add source path\n", "import sys\n", "sys.path.append(SourcePath)\n", "%matplotlib ipympl\n", "from joblib import Parallel, delayed\n", "\n", "# Import PyOR package\n", "from PyOR_QuantumSystem import QuantumSystem as QunS\n", "from PyOR_Hamiltonian import Hamiltonian\n", "from PyOR_QuantumLibrary import QuantumLibrary\n", "import PyOR_SphericalTensors as ST\n", "import PyOR_Rotation as Rot\n", "QLib = QuantumLibrary()\n", "from PyOR_DensityMatrix import DensityMatrix\n", "from PyOR_HardPulse import HardPulse\n", "from PyOR_Basis import Basis\n", "from PyOR_Evolution import Evolutions\n", "from PyOR_Plotting import Plotting\n", "import PyOR_SignalProcessing as Spro\n", "import PyOR_CrystalOrientation as CO\n", "import time\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Define the spin system\n", "Spin_list = {\"A\" : \"H2\"}\n", "QS = QunS(Spin_list,PrintDefault=False)\n", "\n", "# initialize the system\n", "QS.Initialize()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Set parameters" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rotating frame frequencies: {'A': -96482012.17500001}\n", "Offset frequencies: {'A': 0.0}\n", "Initial spin temperatures: {'A': 300.0}\n", "Final spin temperatures: {'A': 300.0}\n", "Radiation damping gain: {'A': 0}\n", "Radiation damping phase: {'A': 0}\n", "\n", "Rprocess = Phenomenological\n", "RelaxParDipole_tau = 0.0\n", "DipolePairs = []\n", "RelaxParDipole_bIS = []\n" ] } ], "source": [ "# Master Equation\n", "QS.PropagationSpace = \"Hilbert\"\n", "QS.MasterEquation = \"Redfield\"\n", "\n", "# B0 Field in Tesla, Static Magnetic field (B0) along Z\n", "QS.B0 = QS.L100\n", "\n", "# Offset Frequency in rotating frame (Hz)\n", "QS.OFFSET[\"A\"] = 0.0\n", "\n", "# Define initial and final Spin Temperature\n", "QS.I_spintemp[\"A\"] = 300.0\n", "QS.F_spintemp[\"A\"] = 300.0\n", "\n", "# Relaxation Process\n", "QS.Rprocess = \"Phenomenological\"\n", "QS.R1 = 1\n", "QS.R2 = 2\n", "\n", "QS.Update()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Zeeman Hamiltonians" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Larmor Frequency in MHz: [-15.35558916]\n" ] } ], "source": [ "# generate Larmor Frequencies\n", "QS.print_Larmor = True\n", "Ham = Hamiltonian(QS)\n", "\n", "# Lab Frame Hamiltonian\n", "Hz_lab = Ham.Zeeman()\n", "\n", "# Rotating Frame Hamiltonian\n", "Hz = Ham.Zeeman_RotFrame()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Dipole tensor PAF" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle \\left[\\begin{matrix}-37.5 & 0 & 0\\\\0 & -12.5 & 0\\\\0 & 0 & 50.0\\end{matrix}\\right]$" ], "text/plain": [ "Matrix([\n", "[-37.5, 0, 0],\n", "[ 0, -12.5, 0],\n", "[ 0, 0, 50.0]])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "QuadrupoleCoupling = 100 # Hz\n", "eta = 0.5\n", "\n", "A = \"A\"\n", "\n", "IT_PAF = Ham.InteractionTensor_PAF_Quadrupole(A,QuadrupoleCoupling,eta)\n", "IT_PAF.Inverse2PI().matrix" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'Isotropic': 0.0, 'Anisotropy': 50.0, 'Asymmetry': 0.4999999999999999}" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "PAF_Decom = Ham.InteractionTensor_PAF_Decomposition(IT_PAF)\n", "PAF_Decom" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Density Matrix" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Trace of density matrix = 1.0\n" ] } ], "source": [ "#-------------------------- \n", "# Initialize Density Matrix\n", "#--------------------------\n", "DM = DensityMatrix(QS,Ham)\n", "\n", "# High Temperature\n", "HT_approx = False\n", "\n", "# Initial Density Matrix\n", "rho_in = QS.Ax\n", "\n", "# Equlibrium Density Matrix\n", "rhoeq = DM.EquilibriumDensityMatrix(QS.Fspintemp,HT_approx)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Evolution" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rotating frame frequencies: {'A': -96482012.17500001}\n", "Offset frequencies: {'A': 0.0}\n", "Initial spin temperatures: {'A': 300.0}\n", "Final spin temperatures: {'A': 300.0}\n", "Radiation damping gain: {'A': 0}\n", "Radiation damping phase: {'A': 0}\n", "\n", "Rprocess = Phenomenological\n", "RelaxParDipole_tau = 0.0\n", "DipolePairs = []\n", "RelaxParDipole_bIS = []\n", "Larmor Frequency in MHz: [-15.35558916]\n", "Total time = 111.73 seconds\n" ] } ], "source": [ "QS.AcqDT = 0.0001\n", "QS.AcqAQ = 5.0\n", "QS.Update()\n", "\n", "QS.PropagationMethod = \"Unitary Propagator\"\n", "\n", "EVol = Evolutions(QS,Ham)\n", "EVol.Update()\n", "\n", "A = \"A\"\n", "B = \"A\"\n", "\n", "# Generate 1000 random angles\n", "if False:\n", " N = 1000\n", " beta = np.linspace(0, 180, N) \n", " alpha = np.linspace(0, 360, N) \n", " gamma = np.zeros(N)\n", "else:\n", " alpha, beta, gamma, weight = CO.Load_Crystallite_CSV(\"rep2000_cryst.csv\")\n", "\n", "rhoI = rho_in\n", "\n", "start_time = time.time()\n", "freq, spectrum = Ham.PowderSpectrum(EVol,rhoI, rhoeq, A, IT_PAF, B, \"spin-spin\", \"secular + pseudosecular\", gamma, beta, alpha, weighted=True, weight = weight, SecularEquation=\"spherical\")\n", "end_time = time.time()\n", "print(\"Total time = %.2f seconds\" % (end_time - start_time)) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plotting" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "plot = Plotting(QS)\n", "plot.PlotFigureSize = (10,5)\n", "plot.PlotFontSize = 20\n", "plot.PlotXlimt = (-200,200)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(
,\n", " )" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "91765dd0012b4cb0bb65be61bcd5e927", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAH0CAYAAACuKActAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8x0lEQVR4nOzdeXwU5f0H8M8eIQQIIeE+koCIIOUURUE5FaqhYCsFkaJSEcXWFvvTSrV4oFVsra3aqgUVsCh426ogJCgUKlQQiVyKgJwRgYSckIQ95vfHsJs9ZnZnNrOz8+x+3q/XvrLHzO4z+WQ2+93nmWdskiRJICIiIiIiIqKEsie6AURERERERETEAp2IiIiIiIjIEpyJbkAy83q9+O6775CZmQmbzZbo5hAREREREVGMJElCdXU1OnXqBLs9Pn3dLNDj6LvvvkNubm6im0FEREREREQGOXLkCLp06RKX52aBHkeZmZkAgAMHDiAnJyfBrSE9XC4XCgsLMXbsWKSlpSW6OaQDsxMXsxMXsxMXsxMXsxMXsxPXqVOn0K1bN3+dFw8s0OPIN6w9MzMTLVu2THBrSA+Xy4VmzZqhZcuWfOMUDLMTF7MTF7MTF7MTF7MTF7MTl8vlAoC4Hr7MSeKIiIiIiIiILIAFOhEREREREZEFsEAnIiIiIiIisgAW6CaI1xT8FD92ux09e/ZkdgJiduJiduJiduJiduJiduJiduIyIzObJElS3F8lRVVVVSErKwuVlZWcJI6IiIiIiEhgZtR3/NrGBG63O9FNIJ3cbjc2btzI7ATE7MTF7MTF7MTF7MTF7MTF7MRlRmYs0E3A4Svisdvt6Ny5M7MTELMTF7MTF7MTF7MTF7MTF7MTF4e4C45D3ImIiIiIiJIDh7gnCQ5fEY/b7cYnn3zC7ATE7MTF7MTF7MTF7MTF7MTF7MTFIe5JgoMUxCNJEqqrq5mdgJiduJiduJiduJiduJiduJiduMzIjAU6ERERERERkQWwQCciIiIiIiKyABboRERERERERBbAAp2IiIiIiIjIAligExERWVVxMfDJJ8CZM4luifgOHgQ++AA4cSLRLSEiIlLFAt0EDocj0U0gnRwOB4YMGcLsBMTsxMXsQrzwAjBwIHDllcCECcDZs4lukSrLZ7dlC9C3r/x77NsXOHw40S2yDMtnR6qYnbiYnbjMyMwmcX7/uDHjRPZERJSkevcGvvqq4fabbwKTJiWuPSIbNQpYt67h9m23AQsWJKw5REQkJjPqO/agm8DlciW6CaSTy+XCihUrmJ2AmJ24mF2IwOIcANasSUw7NLB8doHFOQAsXJiQZliR5bMjVcxOXMxOXGZkxh70OPJ9w1JRUYGsrKxEN4d0kCQJ1dXVyMzMhM1mS3RzSAdmJy5mFyL0dzBrljzs3YIsn51Sm/jxB4AA2ZEqZicuZieuyspKtGrVij3oRImQkZGR6CZQjJiduJhdBHZr/8tmduJiduJiduJidqTG2v/tk4Tb7U50E0gnt9uNlStXMjsBMTtxMbsASr8DCxfozE5czE5czE5czE5cZmRm3f/2REREqaq+Pvw+DoMkIiJKeizQiYiIrEapQLdwDzoREREZg//tiYiIrIYFOhERUUrif3siIiKrYYFORESUkvjfnoiIyGp4DDoREVFKYoFORERkNSzQiYiIUpJNkiQp0Y1IVlVVVcjKykJFRQWysrIS3RzSQZIkuN1uOJ1O2PihWCjMTlzMLsCWLcDgwcH3/d//AU89lZj2RGH57JTaxI8/AATIjlQxO3ExO3FVVlaiVatWqKysRMuWLePyGuxBJ1JRW1ub6CZQjJiduJjdOUo96BY/Xy6zExezExezExezIzUs0E1gxgntyVhutxsbNmxgdgJiduJidgHOng2/z8K/F2YnLmYnLmYnLmYnLjMy4xD3OPINcY/nEAgiIkpCq1cDV18dfN9ttwELFiSmPaLjEHciIjKAGfUde9BN4PV6E90E0snr9eLEiRPMTkDMTlzMLoDHE36fhXtamJ24mJ24mJ24mJ24zMiMBboJPEoftMjSPB4PNm3axOwExOzExewCKP0OXC7z26ERsxMXsxMXsxMXsxOXGZmxQCciIrIapd5yC/egExERkTFYoBMREVmNYEPciYiIyBgs0ImIiKyGPehEREQpiQU6ERGR1bAH3ThqxwtyFnciIrIgFuhERERWwwLdOGq/N07OREREFsQC3QQ2pfOvkqXZbDZkZmYyOwExO3ExuwCCDXG3dHZqs99b+PdpJktnRxExO3ExO3GZkZlNkjjGK17MOJE9EREloRdfBG67Lfi+du2A48cT0x6RlZcDOTnh91dXAy1amN8eIiISlhn1HXvQTWDGCe3JWF6vF4cOHWJ2AmJ24mJ2AZR6d0+cAPbsMb8tGlg6u7lzle9nDzoAi2dHETE7cTE7cZmRGQt0E3DnE4/X60VJSQmzExCzExezC6B2fPSyZea2QyNLZ/f888r3s0AHYPHsKCJmJy5mJy4zMuMQ9zjiEHciIorJM88Ad90Vfj+HueundrzgsWNAhw7mtoWIiITGIe5JwsOZYoXj8Xjw9ddfMzsBMTtxMbsAar27Fi0oLZtdpD4I9qADsHB2FBWzExezE5cZmbFANwGHr4jH6/Viz549zE5AzE5czC6A2gcAi/5uLJtdba36YyzQAVg4O4qK2YmL2YmLx6ATERGlIrXicedOc9shuqNH1R9jgU5ERBbEAp2IiMhqOOzRGB9+qP4YC3QiIrIgFuhERERWE6lAP3vWvHaIrrJS/TEW6EREZEEs0ImIiKwmUvHIAl27Ll3UH2OBTkREFsQCnYiIyGoi9aBz+Lt29fXqj7FAJyIiC2KBbgK7nb9m0djtduTl5TE7ATE7cTG7AJGKRwsW6JbNjgV6VJbNjqJiduJiduIyIzNn3F+B4HA4Et0E0snhcGDgwIGJbgbFgNmJi9kFiFSEW7CwtGx2dXXqj1nw95gIls2OomJ24mJ24jKjruPXNiYw44T2ZCyPx4Nt27YxOwExO3ExuwCC9aBbNrtIx+uzQAdg4ewoKmYnLmYnLjMyY4FOpCIjIyPRTaAYMTtxMbtzBCvQAYtmF+n3yALdz5LZkSbMTlzMjtRYvkC32WxRL0ePHg1ax+PxYMGCBbjiiiuQnZ2NjIwM9OjRA7Nnz8axY8dUX+ubb77BjBkz0LVrV6Snp6NNmzYYM2YM3nzzzUZtA4e4i8fhcKBXr17MTkDMTlzMLoCAQ9wtmZ3Xq/6YBX+PiWDZ7CgqZicuZicuDnGPQV1dHQoKCjBr1ix8+umnqKioQF1dHfbt24dnn30Wffr0weeffx623sqVK9G/f38sWrQIhw4dwtmzZ1FWVoY1a9bg+uuvx/Tp0yFJUkxtcvNDgHDcbjc2btzI7ATE7MTF7AII1oNu2ewE+6IjESybHUXF7MTF7MRlRmbCTBKXnZ2N+++/X/GxVq1a+a/PnTsXhYWFAORvOG655RZ07NgRS5YsweHDh3Hq1ClMmjQJO3fuRPPmzQEAJSUlmDp1KurOTSbTu3dvTJkyBbt378brr78OAHjllVdwySWX4Je//KXutsda2FPiSJKEkydPMjsBMTtxMbsAghXols0uUg+6BX+PiWDZ7CgqZicuZicuMzITpkBv2bIl7rnnnojLlJeX47nnnvPfnjNnDh577DEAwNSpU3HhhRdCkiQcPHgQS5cuxaxZswAAzz77LCorKwEAmZmZ2LBhA3JycgDIU+kvW7YMADB//nzMmjWLw1GIiCi+eB50Y7AHnYiIBCPMEPfvv/8eubm5SEtLQ3Z2NoYNG4YXXnghaJhBYWGhvxccACZOnOi/3rNnT/Tp08d/+/3331e8PnLkSH9xHvocJSUl2Lp1q3EbRUREpISTmxmDx6ATEZFghCnQ6+vrcfToUbjdblRUVOC///0vfvGLX+DKK69EbW0tAGD79u1B65x33nmqt33L1tfXY8+ePZrWUXoNIiIiwwk2xN2y2INORESCEWKIe79+/XDZZZehS5cu+P7777Fs2TJUVFQAANavX4+HHnoIf/rTn1BWVha0XsuWLYNuZ2Zm+q+XlpYCkIfFBx5LEGmdwPWU1NfXo76+3n+7qqoKAOByueByucKWt9vtcDgc/vPpORwOuN1u1WMbHA4H7HY73G437HY77Ha74vP6OJ1yvG63O+i6mrS0NHi9Xni9XjidTni9XtVz/dlsNjidzqC2ezweeFV6K3zbGth2Ldvqcrk0tT1wGd92RGt74LaGtt33e3W5XMzJwjkptT3w+ZhT8LZaMafA/Slwvwtte8rl5PHAptJmV309EJKlmTkp8T2P2+0O2g41ZuVk83hUeyLcdXWQAt7jk21/itR2pf1JKa+k2Z+SKKdAvvskSYIkScxJpe2Jzkmp7b7njLQ8c0p8TkrbGmldo1i+QP/qq6/Qq1evoPt+//vfY8CAATh58iQAYMmSJfjjH/8YFkyk2zabLeoySrd96ymZP38+5s2bF3b/2rVr0axZs7D78/LyMHDgQGzfvh0ZGRno1asXNm/e7N+uUAMGDEB+fj7Wr1+PPn36oF27digsLFTdQUaNGoWMjAysXLkSBQUFqK2txdq1axWXdTqdGDduHEpLS7Fz506MHj0aR44cQXFxseLybdu2xdChQ7F3717U1tb6t+Pw4cOKy/fs2dO/fZ07d/ZvR3V1teLyQ4YM8W/fsGHD/Nuhxrd9GzZs8G/Hpk2bFJfNzMz0b19JSYl/OwJHUvgUFRUxJwFyAhr2p127dvnvY04yK+YUaX8qKiryX0/VnMbW1SFNcSlg0/r1KP/++4TnFKhv374AgI0bN6Jv376WyanNiRNoo7gUsGPbNhxu0ybp96dASvuT7/ceuN/5JMv+lAw5RdqfampqkJmZyZxCWC2nwP1pzJgxAJT3O4A5WSUnpf3pzJkzqtttFJsk6PSBd9xxB/7xj3/4b584cQJ//etfMX/+fP995eXlQTO8T5gwAR988AEAoFOnTigpKUF9fT0yMjL8hfjs2bPx9NNP+9f54osvMGjQIP/thQsXYubMmYptUupBz83NxYkTJ4La4ZPob4BC8Zu6hrZ7vV6UlJSgc+fOcDqdzMmiOSm13eVy4ejRo8jPz4fX62VOsGZOSvtT4H5nt9uD2p5yOU2YANuqVYrLudevh3TZZZbqobDZbCgpKUHHjh3hdDotk5Pt9tthf/llxeU8zz0H78yZSbs/RWp74LbW19eH7XdKbRd6f0qCnJT2J997Zn5+vn955hTe9kTnpNR2u92OI0eOoGPHjmH7nQ9zSnxOSttaUVGBdu3aobKyMmzktVEs34OuJjQEu92Ofv36Bd23f//+oOJ6//79/uu+ZdPT03HBBRf4v6UJXEbpduhrBEpPT0d6erri/Wlpan0hwSe89/0hRBK4TKTnVVom2vK+P9zQ62oC2+5wOKLOcB/Ydi3bqqftgctoaXvgMkptD51/gDmpS2ROSs/drVs3/7rRMKfoy8cjJ7X9KXS/U1omJXKKcOy002YDFLbPzJyU5OfnB922RE4R+iAckgRHwGsm4/6kJnCZ9PR01f3OR/j9SeF6tOWtlpNa2wOzY07KrJBTIN8yXbt2jbosc1KXqM/lSrWe0Sw9SdyLL76IFStWhBXj3333Hd59913/7Y4dOyInJwdjx44N+qW9/fbb/uu7du3C7t27/bcnTJjgvz5+/Hj/9XXr1gUdy/7mm2/6r3fq1AkXX3yx7u2I9A0TWZPb7cYnn3zC7ATE7MTF7AJE+h2o9CokkmWz4yRxUVk2O4qK2YmL2YnLjMws3YO+a9cu3HbbbTjvvPMwduxY5ObmoqSkBMuXL0d5ebl/uTvuuAM2mw05OTm44447/EPUn3zySZw6dQodOnTAokWL/Mvn5eXhxhtv9N+ePXs2FixYgOrqatTU1GD48OGYMmUKdu3aFVTkz5kzJ+q3OUq09OKRtdjtdvTp04fZCYjZiYvZBYj0AcCCs7hbNrtIX2bwgzEAC2dHUTE7cTE7cZmRmaULdJ9vv/026HjzQJMnT8Z9993nv/34449jx44d+Pjjj+HxeLBw4cKg5Vu1aoW33noLLVq08N/XpUsXvPbaa5g0aRLq6+uxe/duPPjgg0HrTZs2DXfeeWdM7efOJx673Y527doluhkUA2YnLmYXIFIRbsEedMtmxx70qCybHUXF7MTF7MRlRl1n6crxvvvuw8KFC3HttdfiggsuQFZWFtLS0tCxY0eMHz8e7777Lt54442gYwoyMjKwatUqvPDCCxgyZAhatmyJ9PR0dO/eHXfeeSd27tyJwYMHh73W+PHjUVxcjOnTpyM3NxdNmjRBdnY2Ro8ejeXLl2Pp0qUxB2LGdPxkLJfLhRUrVjA7ATE7cTG7AIL1oFs2O/agR2XZ7CgqZicuZieulD/NWvv27TFz5kzVWdPVOJ1OzJo1C7NmzdK1Xq9evbB48WJd61Dy4nFB4mJ24mJ250T6AGDBHnTAotmxB10TS2ZHmjA7cTE7UmPpHnQiIqKUFHDKzjAW7EG3LPagExGRYFigExERWU1dnfpjFu1BtyT2oBMRkWBYoBMREVkNe9CNwR50IiISDAt0IiIiq4lUoLMHXTv2oBMRkWBYoBMREVlNpCHu7EHXjj3oREQkGBboJgg8DRyJwel0YtSoUcxOQMxOXMzunLNngdOn1R+3YA+6ZbOL9GVGRYVpzbAyy2ZHUTE7cTE7cZmRGQt0IhUZGRmJbgLFiNmJi9kBqK4GJEn9cYv2oFsyu0hfZhw6ZF47LM6S2ZEmzE5czI7UsEA3Ac9zKB63242VK1cyOwExO3Exu3Oibb8Fe9Atm12kLzPOnjWvHRZm2ewoKmYnLmYnLjMys0lSpK/pqTGqqqqQlZWFiooKZGVlJbo5pIMkSXC73XA6nbDZbIluDunA7MTF7M45ehTIzVV/fMkS4OabTWuOFpbNbuRI4D//UX7soouArVtNbY4VWTY7iorZiYvZiauyshKtWrVCZWUlWrZsGZfXYA86kYra2tpEN4FixOzExewAuFyRH7dgDzpg0ewi/a6i/Z5TiCWzI02YnbiYHalhgW4CDl8Rj9vtxtq1a5mdgJiduJjdOdEKRwseg27Z7Hiatagsmx1FxezExezEZUZmLNCJiIisRNAedEtiDzoREQmGBToREZGVRPt23oI96JYV6Xd16pR57SAiItKIBToREZGV/PGPkR9nD7p2kX5Xp04BX39tXluIiIg0YIFORERkFS4XsHx55GVYoGsXbbTB3LnmtIOIiEgjFuhERERWUV4efRkOcdcu2pcZ77xjTjuIiIg0YoFOpMLpdCa6CRQjZieulM9Oy+ywFu1Bt2R2/DJDE0tmR5owO3ExO1JjkyRJSnQjklVVVRWysrLieiJ7IiJKIvv3A+efH3mZP/0J+O1vzWmP6Hr3Br76KvIy/BhEREQamVHfsQfdBF6L9naQOq/XixMnTjA7ATE7cTE7ALW10Zex4O/HstmxBz0qy2ZHUTE7cTE7cZmRGQt0E3DnE4/X68XOnTuZnYCYnbiYHbQV6BYsOi2bndXaY0GWzY6iYnbiYnbiMiMzDnGPIw5xJyIiXf77X2DYsMjLPPooZx/X6rzzgAMHIi/Dj0FERKQRh7gnCX47Jh6v14tDhw4xOwExO3ExOwBnz0ZfxqI96JbMzmrtsSDLZkdRMTtxMTtxcYh7kvBY8MMURebxeFBcXMzsBMTsxMXsANTXR1/Ggh/oLJud1dpjQZbNjqJiduJiduIyIzMW6ERERFYhaA+6ZVnwywwiIqJIWKATERFZRV1d9GVYdGrHLzOIiEgwLNCJiIisYunS6Mt4PPLEZq+9Bjz0EPDtt/FvlyjeeQeYN6/h3OdavszQclgBERGRSVigExERWcWKFdGX8XqBp54Cpk0DHnkE6N8fKC+Pf9us7sUXgZ/+FHj4YWDQIKCkRFuBvnVr3JtGRESkFQt0IiIiq+jSJfoyHg/w29823K6pAZ58Mn5tEsVttzVcr62VT0enZYi72x2/NhEREenEAt0ENpst0U0gnWw2G9q2bcvsBMTsxMXsAFx1VfRllHqFP/nE+LboYMns1q3T1oOu5bj/JGbJ7EgTZicuZicuMzJzxv0VCE4nf82icTqdGDp0aKKbQTFgduJidgBcrujLKPUKJ3gyNMtmxx70qCybHUXF7MTF7MRlRl3HHnQT8ByH4vF4PPj666+ZnYCYnbiYHbSdZk2pV1jtG/3q6sa1RyPTsjt7Vl+Pt5Ye9BQv0LnfiYvZiYvZiYvnQSdKoNra2kQ3gWLE7MSV8tkZdR70Y8eAgQOBli2B0aPlY7LjLO7ZrVsH5OYCzZsDc+ZEX16S2IOuUcrvdwJjduJidqSGBboJHA5HoptAOjkcDgwcOJDZCYjZiYvZQdsQdy29wi+8ABQXy9fXrgX+/vdGNSsaU7KbNQs4cULe/j/9CTh4MPLykqTtd6Xld57EuN+Ji9mJi9mJy4zMWKCbgMNXxOPxeLBt2zZmJyBmJy5mB+Ue9ClTgm8r/X5Ch7i/+GLw7XvvbVy7ooh7dl4vsGdP8H3/+5+WhgXfvv/+8GVSvAed+524mJ24mJ24OMQ9SXi1fINPluL1enH48GFmJyBmJy5mh/De3D//GejcOfg+Lb+f7783rk0axD07pQ9EpaWR15Ek+RJo6lSga9fg+1K8QOd+Jy5mJy5mJy4zMmOBTkREFA+nTwPvvQds3ap9ndBisXlzIHQ4XSr2uMRSRCt9iLLbgfbtY3tulwt4/33g00/1t4WIiEgjFuhERERGO3sWGDwYuO464JJLgFde0bZeaPHtdMpFZaBU7HFR+lIitHdcyzoOh/w7DaSlQJckYMwY4NprgSuuAJ54Ivo6REREMWCBTkREZLQPPwR275avSxIwfbq29UKLRYdDWw+62mnWkoVRBbrdHluB/r//Af/5T8Pt++6Lvg4REVEMWKATEREZbcWK2NZjD7qyWIa4q/Wgp6UF36dlFncOayciIpOwQCciIjJaRkZs68Xagx6tN1l0sRx3b2QPutIIBS3nrCciItKJBboJ7KG9H2R5drsdPXv2ZHYCYnbiSqrsmjQJv09Lz7eWHnSlgjLBQ9zjnl2ij0FXWiZJCvSk2u9SDLMTF7MTlxmZOaMvQo1lxgntyVgOhwO9evVKdDMoBsxOXEmVnVKBXlsrz8oeiZYedC1Dsk0W9+yMnMU9lgJdqRi3YA6xSKr9LsUwO3ExO3GZUdfxaxsTuFP8HKsicrvd2LhxI7MTELMTV1JlF3qcMwCcORN9PS096BbsuY17drH0oCsV6LH2oCdxgZ5U+12KYXbiYnbiMiMzFugm4PAV8djtdnTu3JnZCYjZiSupslPahtOno6+npQe9vj58vQQfgx737BI9i3sSF+hJtd+lGGYnLmYnLjMy41+FCbjzicdutyM/P5/ZCYjZiStpsvN6gUceCb/fqB70DRtib1ucxD27WHosamrC71PqQddSaCt9KfL88/rbZEFJs9+lIGYnLmYnLhboSYLDV8TjdrvxySefMDsBMTtxJU12q1Yp329UD7qSBE8SF/fsjJq53m4PP/xAS5uVvlx5/HH9r29BSbPfpSBmJy5mJy4OcU8SUrKf/iYJSZKE6upqZicgZieupMnurbeU7zeqB92C4p6dUoEeeIy51nPDxzrEXe3LlST4cJ00+10KYnbiYnbiMiMz6//XJyIiEola0VZZqX9drT3oyf4hT+l3Gnif1vOkxzpJXHW18v21tdpel4iISCMW6EREREZSK/gOHoy+bnl58G2je9BPngTefx/49lvjnjMeJAlYtw74+GP5ulIBHnif1p5spR50LYcenDypfL+WURFEREQ6sEAnIiIyklqxuG9f5PUOHAi/z8hj0EtKgP79gWuvBfr2BTZujL5Oovz618CoUcBVVwEzZigX6LH2oIf+Pl95Jfp6X3+tfD8LdCIiMhgLdCIiIiOpFeilpZHXe/bZ8PuM7EF/5hng2DH5+pkzwC9/aczzGu30aeDvf2+4vXgx8N134csFFuVaC3S7XbnYjtaLrlaIs0AnIiKDsUAnIiIyklqBHul4ZUkCnn46/H4jj0EPLHoBoLg4+jqJUFYWft/eveH3Bf6etQ5xdzjkkQShNm1SX8frVT4POsACnYiIDMcC3QQOLR+uyFIcDgeGDBnC7ATE7MSVFNlJEvDhh8qPRSrmPv9c+X6tPehaepDT06MvEyNDs1PaXqXzkMcyxN1mU37+665TX0fptX0++0zb61pYUux3KYrZiYvZicuMzFigm8CME9qTsex2O9q1a8fsBMTsxJUU2UU6rjtSD/rDDyvfr7UHXUuBGnr+bwMZmp3Stij1YOudJM73e1Q6Xr+6GjhxQnm9ujr15/zVr4SfQT8p9rsUxezExezEZUZm/KswgcvlSnQTSCeXy4UVK1YwOwExO3ElRXYLF6o/FqkHfeVK5fubNNHWg66lQI3jhwpDs1N6DqUiWG8Pum/71ZZVGkYPRC7QAWD//uivbWFJsd+lKGYnLmYnLjMyE65Ad7vdGDRoEGw2m/8yffr0sOU8Hg8WLFiAK664AtnZ2cjIyECPHj0we/ZsHPNNkqPgm2++wYwZM9C1a1ekp6ejTZs2GDNmDN58882Y2+wMPaULWZ7T6cSwYcOYnYCYnbiSIrvNm9UfU+tBf/tt9XXS07X1oOvpQY4DQ7NT+vDj9Ybfp/cYdN/2d+um/PgVVyhnFGmIOwDU1ER/bQtLiv0uRTE7cTE7cZmRmXAF+vz58/HFF19EXKaurg4FBQWYNWsWPv30U1RUVKCurg779u3Ds88+iz59+uBzheP9Vq5cif79+2PRokU4dOgQzp49i7KyMqxZswbXX389pk+fDknwoWykXUZGRqKbQDFiduISPrsmTdQfU+pBlyRg0iT1dTp3Nu4Y9DgPyzMsO6UCXakA1zvE3bf9996rvsxdd4XfF60HPQkmihN+v0thzE5czI7UCFWgb9++HY8++mjU5ebOnYvCwkIA8oH8M2fOxIMPPoi8vDwAwKlTpzBp0iScDjitSklJCaZOnYq6c/+Ie/fujUceeQRTpkzxL/PKK6/g+eef191ut9bZZcky3G43Vq5cyewExOzElRTZRZqITamQW7VKffmxY+XjpQXoQTc0O6UCPdokcXoK9KFD1ZdZuDD8uaIV6NFO0WZxSbHfpShmJy5mJy4zMhOmQHe5XLj55pvhcrlw8cUXo3PnzorLlZeX47nnnvPfnjNnDhYuXIh58+ahsLAQtnOTwxw8eBBLly71L/fss8+isrISAJCZmYkNGzbggQcewPLlyzF16lT/cvPnz4dH62yxRESUWiL1oCsNn545U335Sy6RfwpwDLqh4lWgR5okLlDofADRCnTBh7gTEZG1CPLfGnjsscdQXFyM9PR0vPLKK6rj/wsLC/294AAwceJE//WePXuiT58+/tvvv/++4vWRI0ciJydH8TlKSkqwdevWxm0MERElJ7096Ern5PbxFft6e9CVjtfW+jxWoFSgGzGLu9YvKA4dCr6d5D3oRERkLULMTFBcXIzHH38cAPDII4+gd+/eqstu37496PZ5550XdnvHjh1By9bX12PPnj0R1wl9jcGDB4e9dn19PeoDvuWvqqoCIPf+K834Z7fb4XA4/D3yDocDbrdb9Th3h8MBu90Ot9sNu90Ou90ecSZB35cYbrc76LqatLQ0eL1eeL1eOJ1OeL1e1dECNpsNTqczqO0ejwdelQ+Gvm0NbLuWbXW5XJraHriMbzuitT1wW0Pb7vu9ulwu5mThnJTaHvh8zCl4W62YU+D+FLjfhbZdlJwcXq/6N98eD9y1tZACvmCOdOIzSZLgdrlg83qj/7M+fbqh7fX1ys+r0HOs9rvU+77n+x243e6gvzc1kXKy1daGb69Cge49exaec6+huE4IyeGA+9zyEU84Z7MFbautpibic0vV1f7nVZKo/UlJpP1JKa9E709K25ps73uR2h7tfc93nyRJ8vsFc1Jse6JzUmq77zkjLc+cEp+T0raaMYu75Qt0l8uF6dOnw+Vy4bLLLsPdd98dcfmysrKg2y1btgy6nZmZ6b9eWloKQB4WHxhqpHUC1ws1f/58zJs3L+z+tWvXolmzZmH35+XlYeDAgdi+fTsyMjLQq1cvbN68GSdPnlR8/gEDBiA/Px/r169Hnz590K5dOxQWFqruIKNGjUJGRgZWrlyJgoIC1NbWYu3atYrLOp1OjBs3DqWlpdi5cydGjx6NI0eOoLi4WHH5tm3bYujQodi7dy9qa2v923H48GHF5Xv27Onfvs6dO/u3o7q6WnH5IUOG+Ldv2LBh/u1Q49u+DRs2+Ldj06ZNistmZmb6t6+kpMS/HYFf0vgUFRUxJwFyAhr2p127dvnvY04yK+YUaX8qKiryXxctp2vXrVNc1+fToiJUBPy/uTbCst5zxyi2++ILDIn4rACqqvw5Oerq8KNoy5+j9neg932vb9++AICNGzeib9++jcqp7bZtCDtKXGGI+7GjR/H5ufbnr16NAVG29azLhVXnlo/0e4fNFrQ/5a5di4siLO794gtL70+BlPYn3+89cL/zSfT+FCjZ3/cC6X3fq6mpQWZmJnMKYbWcAvenMWPGAFDe7wDmZJWclPanMyZMDGqTLD4t+YMPPohHH30UTZs2RXFxMXr27AkA6Nq1Kw6dG4Z28803Y8mSJQCA22+/HQsDzkPr+zbfZ9q0aXjttdcAAE2bNkVtbS2OHTuGTp06+ZeZO3du0GR0+/btQ48ePfy3n3jiCcyZMyesrUo96Lm5uTh27Bhat24dtnyivwEKxW/qgnvQi4qKMGbMGKSnpzMni+ak1Pa6ujqsXr0aBQUFsNlszAnWzEmtB92336WlpQW13dScampgf/JJ4Pvv4f3lL4Ef/CBoW1Vzqq9HWsgXuqHcR45Aat++4fUjHLMuzZ0L94MPwlZUBOe4cRGfFwC827fD06sXUFGBtHbtwhfo0SPsXN8upaHjiK0HfdWqVRg7dizS09Mb14O+YgWcP/lJ8ArjxwMffBD8mtdeC89bb8nP17UrbN99p/p6ACA1bQr3uZFtkX7veO45uG+7zb+t9ieegOPBByM+t9rvEQjZn5xOeBctAjZuhPdHP4L0o+CvUhLRk3TmzJmw/U6p7XzfC297onv8fO+Z11xzDdLS0piTStsTnZNS2yVJwkcffaS43/kwp8TnpLStZWVl6NixIyorK8M6dY1i6R70I0eOYP78+QDkY9B9xXkkoYVwdXU1WrVq5b/tG3YOwH+ceU5OTtAH+dBvjwLXCVwvVHp6OtIVjj9MS0tT3fkABH2BoOXceoHLRHpepWWiLe/7ww29riaw7Q6HI+i2ksC2a9lWPW0PXEZL2wOXUWt7Wlqa/37mpC7ROQViTupEyUnpPdPUnP7v/4CXX5bb+c47wJEjQPPmim0P2tbvv4/aLqfLBWhoPwDYJElue6Tj2gO345tvYD/Xk61VtN+N1v3J92HH6XT6f5cx56T0IUuhB93u8cDuWydKcQ4AtrNnNbUJ5z4s+kUbznjlldq3ddky2G+9FQBgP1eoY0j4+IhEvO9F+qzC9z1lVvn/ZLPZYLPZmJMKq+QUuIzvPTNajcCc1CXq856m/yONZOlJ4srKyvzfWNx9993+NyCbzebvPQfk05/ZbDZMnz4d/fr1C3qO/fv3q972LZueno4LLrhA0zqB62ml5Y+GrMXpdKKgoIDZCYjZicsy2Z0rzgEA5eXAggXa1tMyWZieGb99hWGUDzV+vg8Nar25audhN4Ch2SnN2H7u1KlRl4tEbfK8UKHH6gccNqPo+HHtbZg2Lfh2lMP2zGCZ/Y50Y3biYnbiMiMzSxfosfANr/N5++23/dd37dqF3bt3+29PmDDBf338+PH+6+vWrQs6lv3NN9/0X+/UqRMuvvhiw9tN1lOrdEokEgKzE5cls9u5U9tyWorvJ57Q/rq+4c9RehH8fB8a1ApXpRnjIwxR1Muw7LTOih74elEOLQjz85+rPxZYoHs8wLvvam9HNKFfiKgck2k2S+53pAmzExezIzWWLtBbtWqFiRMnKl4CJ13Lz8/HxIkTcckllyAnJwd33HGH/7Enn3wSt99+Ox566CFcffXV/vvz8vJw4403+m/Pnj3bPxlcTU0Nhg8fjkcffRRTpkwJKvLnzJkTdchFqEjHaJA1ud1ubNiwgdkJiNmJy7LZae2pDS3QFeYewbJl2l/38svln1p70H097np6lpcv175sBIZmd24IeFSBIwJGj9b3GpHOPw80/C5DzgwDAGjbNvi24OdBt+x+R1ExO3ExO3GZkZnlJ4lTozZJHCB/IzV+/Hh8/PHHiuu2atUKq1evDjtV2gcffIBJkyYFTfQWaNq0aXjllVeiHkPhU1VVhaysrLhOIkBERAYLHeI8cSIQ8EWtqg8/lCcz88nLA5Rm0C0pAX76U+Czz9SHXW/ZAvhGa23aBAwNm9c83BtvAJMnA8XFwMCB0ZcH5OJfZeKehNi7Fwg45CyiCy8EfKPipkyRtz+awI88l18uHwOuJC0N+N3vgB/+ELjiiuDHOncOHo3QvLn2Il3hVHdGHWZARETxZ0Z9Z+ke9FhlZGRg1apVeOGFFzBkyBC0bNkS6enp6N69O+68807s3LlT8Tzm48ePR3FxMaZPn47c3Fw0adIE2dnZGD16NJYvX46lS5dqLs4Dqc1CSNbl9Xpx4sQJZicgZicuy2antUc6dGh2ixbKyz33nFx0R9rO7OyG61r/7/iOPdfTg27Q79qw7FROIaQosAc9wizqqs7Nzq/I5QIefVT58IamTYNvnz4d++9R4wSA8WTZ/Y6iYnbiYnbiMiMzYQv0gwcPQpIkSJIU1Hvu43Q6MWvWLGzcuBGVlZWoq6vDvn378Le//Q2dO3dWfd5evXph8eLFOHz4MOrr63Hq1Cl8/PHHmDJlSsxtVTutAFmXx+PBpk2bmJ2AmJ24LJtdrEPc1Qr0xx+P/lwZGQ3XtR5W5StS6+q0LW8gw7LT05scWJTHUqBrmYn3L38Jv0+pqI71vLgWKNAtu99RVMxOXMxOXGZkJmyBTkREZDiNp/hSVFERfFutQNcicNIzrT3ovnbqnd3cSvTM8RJ4+rN4FehKhbdSUa11Yjstz0VERCmNBToREZGP0jfjWou/e+4Jvh3YC65XwESounvQU7FAj3au8lgpPW+rVuH3rV4d/bmUvvxpzJc4RESUlGI6kZvH48GHH36I//znPzh48CCqqqqijse32Wyqk7YRERFZgtLsrLEWvP/5jzzh2Tff6F83sFBNpR50PRo7xP3CC6Mvo1SgP/po+MRx994L3HRT5OdS6o1v3jx6G4iIKKXoLtA/++wz/OxnP8OBAwc0ryNJEmxKM5cSERFZiVKBruX4YqWe95oaYM4cYMaMhvuaNIleTObnB9/W24MeS7FqFXp6whs7xH3UqOjLKP09KM2of/x49Oeqrg6/rzGjLIiIKCnpGuK+f/9+jB07FgcOHPBP0BbtQkREJAylgqyyMvp6ahOz9e8ffFvLl9Whp3TTU6CXlAA/+5m25a1Iz/ll3W7g4YfloeOxFOgXXBD99HWh7enWTVuGSpRGNjhjGshIRERJTFeB/thjj6H63DfANptN04XA34OAbDYbMjMzmZ2AmJ24LJFdrAV6bW34fTffHF6ARRt+/qMfNZz/3CfwePRI6uuBRx7RtqzBDMtO77Hk8+YB27bFPmqgqCjy46F5NaagVso+hlO3Gs0S+x3FhNmJi9mJy4zMdP1nWLNmTVCj2IuujZPfkAvH6XRi9OjRzE5AzE5clshOqUDX0qurVKDPmaNtpvBAv/51+H1aj1M+exZYuFDf6wH6Tm2mwrDsYpns7fe/j32SuGbNwkc5BAo9dMG3fT17Bt8frSceUC7QLfDh3BL7HcWE2YmL2YnLjMx0FegnTpwAAH/Rfccdd2DdunXYs2cPDhw4EPHy7bffGt96QZhxQnsyltfrxaFDh5idgJiduCyRnVIxrqU9SgV69+76e1yVllfqQR87Nvy+WHuR9QwrV2FYdrFsQ01N+Hq9e2tfX0+R7Mvn3nuD79fyO1TaNgucA9kS+x3FhNmJi9mJy4zMdBXo7du3ByB37Y8dOxbPPfcchg8fjh49eiA/Pz/qJVVx5xOP1+tFSUkJsxMQsxOXodm98w7QowcwcCDw2Wfa14u1QA+dSM5ul3vPjSjQlc6VfccdwOzZwffFOnu7AacoMyy7WL9kCN32Z5+VDzHQQs8IAt+IiNAvTbScB10pH71fjjz2GJCXJ39Bc/SovnVV8D1TXMxOXMxOXJYr0EeOHOnvPc/Ly4tLg5IRh6+Ix+l0YujQocxOQMxOXIZlV1UF/PznwL59QHExMHOm9nWVCiYtBVxoD3pGhtwza0SBbrMFzzienQ0UFMgzwgeKtbg1oEA3LLtYv2QI/f03awZceWXwfc89p7yunl5s3/aFFuhaZvpXykdPgf7558DcucCRI/Kx8w89pH3dCPieKS5mJy5mJy7LDXG/9957kX7um/yPPvoIp7V8Y0zwWGAIG+nj8Xjw9ddfMzsBMTtxGZZdUVHwKa127JCHQWuhVjBFK9JDn9933LjeY9DV/vEvWgRcdx1w1VXABx/IxXloz3oCh7gbll0s22CzhRfIGRnybPYPPQRceqlc2M6apby+nt4QXz6h8wJoKdCVvnzQ8+VI6BcMixZpXzcCvmeKi9mJi9mJy4zMdBXoP/jBD/Diiy/CbrejpKQEw4YNw6pVq3BW5HOumoDDV8Tj9XqxZ88eZicgZicuw7JTOqb4+++1ratWrB48GHm90HNcZ2XJP43oQQeArl3lYftFRcDll8v3hfagJ3iIuyHZxfJ5wuUK7wXPyJAPM3j4YeB//wMefVR9xnQ9Q9wb04P+6qvh9+n5cuTLL7UvqwPfM8XF7MTF7MRlRma6++inTZuGs2fP4tZbb8WXX36JcePGwW63o23btmjatKnqejabDfv3729UY4mIiKLKyAi/T8up0gD1gunhh4FXXlFfr6oq+HZmpvxTb4GuZ8IyCw1xN0wsXzIoFcdaT00HxNaDrlSgS5J6frW1jS/Q2RlCRJQSdBfob7zxBmbPng2bzeY/Ht3j8eD7KL0TPM8fERGZQqno0dLDqbYuAPzzn/oK9JYt5Z96h7jr6c0NHeKewB50w8RShCrNoK/0JY0aPUWy2hB3j0f+/at1VBQXN/61iYgoJegq0Ldu3YqbbroJLpcLNptNc9HNc6ETEZFplI4Pq6uLfV0tQoe4x9qDrvWc54BxPehWKhJj2YbG9qC3aqV9WV+eLVqEP1ZTo16gq/1dWel3T0RElqDrGPQnnnjCX5wTERFZklLRo7Xw/vDD2F5z2bLg275CW2+Bfv752pcN7UFX6knWwko96EYNcY9wyF2YJ57QvqwvT98XMIEiHSPucCjff/QocOyY9tcnIqKkp6tA37hxY1BxLkmSpgsREZFplIpxLQX6mjXAH/6g//VeegnYvTv4Pl/vtlphpuS229QnMlOSkxN8u7RU+7qBrFSgx9KDrjR6Qc/vMfAUdtEEHoMe+hpXXQVUVCivF+k498sv1/b3yc4RIqKUoKtArzj3j0eSJDRp0gQvvPACvv32W5w5cwZerzfiJZVPI2DX80GBLMFutyMvL4/ZCYjZicuw7JR60LUMJb711the7+WXw+/zFeh6iqqJE/W9btu2wbdPntS3vo8BBbph2cXSgx6arZ4h64D8JUp2trZlfQW6zaZ8nPuSJcrrRfodHzgArFih7fVDGdAJwvdMcTE7cTE7cZmRma5X6NatGyRJgs1mw09+8hPcfvvt6Nq1a8TZ2wlw6OlBIUtwOBwYOHAgsxMQsxOXYdnFOsT90KHYXu9//wu/L/T48GhatAAuu0zfOqEF+unT+tb3MaBANyw7I2YqDx1ZoMULL2hbLvCQBaUJADdsUF4v2naFjsBQovRljwHHsPM9U1zMTlzMTlxmZKarQP/pT3/qv84/KO1SefSAqDweD7Zt28bsBMTsxGVYdkrrGzkZlyQBDzwAtGsHdO6svEzo8eGRdOsGvP56w8zvWvnOtd5YBvxuDMvOiAK9Y0f960ycCEyfHj23aAX6u+8CHToAF14IfPppw/3RvgSJ9fdmwJcrfM8UF7MTF7MTlxmZ6SrQf/vb36Jr166QJAnvv/8+9uzZE692ESVchp7T9JClMDtxNSo7SZIvjZkkLpJf/AI4fhzYulU+Vv3kSeC775SX1dqD/uyzwLffAuPG6W+PnhnfIzHoGHRD9rtYTxUX3BD96zidwOLF8mz/F12kvpyW0+YdPw58/bX89wIARUXAdddFXifWoeoGffHE90xxMTtxMTtSo2t62bKyMrz88suYPHkyysrKcOmll2LWrFkYM2YMcnNzow51z8vLa1RjRcXRBuJxOBzo1atXoptBMWB24oo5O0kC7rpLLna7d5cn6wplRCHzwgvA/v3aerq1FugzZ8beHj2nEotE6ynoIjBsvzOiB72xh9397W/yxG1KAnvQo33ps327/Pdy9dWRJ4kDtBXoSss8+aQ8C312tjwKY/To6M8Tgu+Z4mJ24mJ24rLcEPeuXbviqquuwqlTp2Cz2VBVVYUnn3wSY8eOxYUXXohu3bqpXs4777x4bYPluXmeU+G43W5s3LiR2QmI2Ykr5uy2bZOLc0AuiBYsCF/GqCFphYXAiRPRl9NSoK9a1bhi0uFofDEKyOfvbiTD9jsrFOhDh6o/FtiDHq3oBoA//UnbcrEW6H/4g/zl08mTwD33RH8OBXzPFBezExezE5cZmemehi7w1Gk2m03zqdZS+XRrqbztopIkCSdPnmR2AmJ24oo5u7//PfoyRv5DDT2tlxItx6D369f4thgxRFLL9kRh2H5nxBB3I760eOgh5fsDe9C1FN6bN2t7PS3PFW2Zbdu0vVYIvmeKi9mJi9mJy4zMdA1xBxB0HnSl20r4x0dERHGjpdfVyEldtLyelh50vTO9K9EzGZ0aAwp0w1ihBx1QP3wgsAddy9+U1lO+xdqDHsrjkUdWEBGRsHQX6AALbiIishAthZKRPehGFehaJhyLxohi1IBj0A1jRIFuxJcWatnoLdC1ZmxUgV5fb9zcBERElBC6CvThw4dr6jEnIiIyjZbi28gedC2znovUg759O3DTTXJh98gj8unjzFRUBLz0EtCrlzG9+UZ8aaGWjd4h7lq/GDKqQK+tZYFORCQ4XQX6unXr4tQMIiKiGGkpmEMLpU2bgIULgR49gN/+Vt9EaVqKLrN60I0o0F9/veH6/v1ywWyWgweBH/4w9tOMKTGiQFfLRs8s7oD2v6uKCnn0wMGDwJ//LJ8p4N579X9ZYqXREEREFJOYhrgTERFZht4e9O+/B4YPb1jv978H7DrmTNVSmGkpnI04VtiIAj3QmjXmHsf8hz8YW5wD8e1BD6SlB11rgf73vwOvvioX6j5ffQWsWNFwW8vviQU6EZHwdM/iTvrxPOjicTgcGDBgALMTELMTV8zZaSnQA5d5/PHwdbQUWz5aCiUjhq9rYUQxGiqGmdRjzm7vXt2vFZVZPeha/g70DNkPLM4BYOXK4PW1/I3W1mp/vXP4nikuZicuZicuy50HnWJj19MzQ5Zgt9uRn5/P7ATE7MQVc3Z6e9D/9z99zx9KSwHrNGmAmtE96EBMvbAxZ2fEMP9Q8exB13t8d2PPMX/8eMN1LSM3zMyOEo7ZiYvZicuMzHR9grjllltifiGbzYaXX3455vVFZsYJ7clYbrcb69evx/Dhw+E064M2GYLZiSvm7LS8xz7wAHD99fIx5998E3sjAaC8vHHrGykeBXoMPegxZxePnoh4Fuh6zzsf2iuu1/ffA+efDyxZIh+fHk0MPeh8zxQXsxMXsxOXGXWdrr+IJUuWxDSLuyRJKV2g89sx8djtdvTp04fZCYjZiSvm7LT+s7z+euCLL4DKSv2N08us05HGY4h7DDPeW2q/M+J3ovYcegv0xtqyRe61//nPtS0fYw+6ZbIjXZiduJiduCzXg+7D86Drw51PPHa7He3MPtUQGYLZiSvm7LQW6Nu2AVVV+p/fyuLRgx5D70DM2cXj84SVetAby+UC/vlP7cvHWKDzPVNMzE5czE5cZtR1Mb2CzWbTdUl1Li2nACJLcblcWLFiBbMTELMTV8zZ6SkozSrQmzdvuP7EE/F7nWgF+r336n/OGAp0U/e7qVMjPx7PAn3YsIbrbdo0/nWiqaoCDh/WvnwMQ9z5nikuZicuZicuMzLTXaBLkqTpErgskYg4d4C4mJ24YspOzzoxFDC6tW4NXHFFw22tw5NjEakYbd4c+MEP9D9njPuPafvdxImRHzdiVIHSsfFTpwLt2zfcfuGFxr9ONGfPAr16aV8+xtOs8T1TXMxOXMyO1Oga4r527dqIj5eVleHQoUN4/fXXsWXLFthsNrRp0waLFi1CixYtGtVQIiIiRXq+zT571vjX/9OfgIEDgd/+Vp5g7amngntg27UD7rsPmD+/4T6jTsMWqRh1OvXPOg4AX34J9OwJxHsEXHk5sH27/vWiTSxnRA96ly7h9/3jH8G3J0wAfv1r4P33gSFD5HyvvVb+/Rmlvl5fhmZ8AUVERHGlq0AfMWKEpuV+85vfYNGiRbj11ltRWlqKv/3tb1i1alVMDSQiohQlScDdd8uFUc+ewBtvABdcEL6cnl6IGGYoj6pFC+Cqq+Rj3NX85jfAiy8CpaVy4fvqq8a8diwFekZG5EJuyhRg6VLggw/iV6QXFwM//CFw4oT6Mna78rm/o814bFSBfs01wEcfybenTwcyM4OXadIEeOYZ+eJj9JwAZ8/q+1JJrQf9pZeAe+6Rt+Gf/wRGjTKmfUREZLi4HeV+yy23YPTo0ZAkCUVFRXj99dfj9VJERJSMNm8G/vpXuZgsLgYeflh5OT0F+rJlRrQsmJZzebdtK/esvvgi8N//ApMmGfPakYpRtQI9Kyv6865YAUQZNdcojz8euTgH5EMFlJjRgw4A//qX/EXFG2/IBa4WRp/XvaIieORFNEoFelUV8KtfyWcvOHpU7vUnIiLLius0dD179vRfX7RoUTxfioiIks2CBcG3ly9XXk5Pgf7UU7G3R43WoqxTJ+DWW4GhQ4177Vh60HNztT33K6/E1iYt3nor+jIdOyrfb0YPOiD3kE+bBkyerP187UYX6Ho7N5RGRrz/fnDhvnOneacBJCIi3eJWoNfX12PDhg2w2WyQJAnFxcXxeikiIkpGWmdcT/QsuEYXZXpE60FXOi1Y587anjvRExgp9aDbbOYV6LFI5N8CoNyDrnRforMlIiJVuo5BX79+fcTHvV4vamtrUVJSgsWLF2Pnzp3+06xVV1fH3krBOaN9mCDLcTqdGDVqFLMTELMTV1h2Wo9/jsfEb3ok8m8tlgJdyxB3APB4NDcjLvud0rY5HNF7s+NxbnitEl2gK/WgK32B5XL528r3THExO3ExO3GZkZmuVxg5cmTM5zXv1KlTTOsRJUqG0gdbEgKzE1dQdnaFQV7btwP9+gXfF+OppTQZPRr45JPIy4jWg651VnCl338Ehu93x44p3x/tw1EqF+ih+0J1dfihIkBY0c73THExO3ExO1IT0xB3redC9w1vt9lsGDdunNFtFwbPcyget9uNlStXMjsBMTtxhWWn9IVw//7AzJnB98WzQF+wAIj2/8vKBXpjhnvrKNDjst8pfXiVpMgFelqa7i8WDBXtb2HjRiAvL36vH9iDfugQ0Lev8mnfAkad8D1TXMxOXMxOXGZkFtN/MZvNpuni0759e9x///2GNVo0HL4iHqfTiYKCAmYnIGYnrrDs1Aqtl14CvvlGvu5y6RqKHZHSuckzMoDnnou8XiIL9Ei9xXa7cpGrdOoyJTpGzMVlv1N7/UhD3BPZew5E/lv4+c/l86UrtdGo31tggf7KK3KRriSgB53vmeJiduJiduIyIzPdBbrW3nPfZciQIVi3bh06dOgQj/YTxU1tpPMEk6UxO3EFZRepJ9R3fmoje89fey38vqZNgfx8YMkS9fWsegz6jh3Kj2st0HX2RBu+3ynNNB6tB13pSxYzRSrQX35Z/qnU/j//2ZjXD9wfHnpIfbmQIe58zxQXsxMXsyM1uj5V3HTTTVGPQbfb7WjRogW6deuGESNGYODAgY1qYDLg8BXxuN1urF27FgUFBUhL9DGFpAuzE1dYdpH+3/jeV40s0JV6m30F3+TJwPTpyutZdYg7oFxkx6FAj8t+d8klwKZNwfdFK9Ct2oOend3w99y+PfDVV8GPG9XuXbu0LRcyxJ3vmWJiduJiduIyo67TVaAvidSDQEREZKRIBaKvyHznHeNe78orgVatgIoK+XafPkCLFvL1jAygd29g9+7w9axcoCuRJOD++4HHH4+8XIyTwhpmzhzg2WeD75OkyMWsVQv0J59suP7EE8BllzXc/vWvjWv3gQPyl1fRRnUk+swHRESkStf4tcOHDwddPEYd90dERKnH6wX+8hdg6lTgww/DH49UIG7YIK//i18Y156mTeVh7hdeCAwcCLz4YnAbLr9ceT2rHoOuJiMDmDcv+nI2m1wQKw01j4UkaS8M27YFlM7+0ry58kgHH6sW6IHndB88GHj0UaBrV3kCwvvuM7bdRUXA8eORlwkZ4m53uWB/7DHglluALVuMawsREemmq0Dv2rUrunXrhm7dumHQoEHwah0mR0REFOrpp4G77waWLweuvRa2zZuDH4/Ug/7BB8CoUcYVjz4FBXIv+RdfBPdyAuq9klY9Bt3nyiuDb991l9zmaO2uqACuukrOYezYhpEFsfj4Y6BdO6Bly+DeZDUjRsg/H3gg+P6XXop8mjirFuiB99tswNy5cm/3hx8CHToY2+5//hPo0SPyMiFflFz46qtwzJsHLF4MXHEFUFZmXHuIiEgXXQV6enq6f/K3kSNH8pgJIiKKXWFhw3WvF/Y5c4Ifj3YM9Pr1xrcpEi3Fl9m0FOh//CNw/vlyz/Mf/iBfB6JPqPbuuw3ngC8qUp5ET6u77wZKS4H6ernHOBrfdv3yl8DIkfLtG24Arr1WzB70aH8jkWam1+v11+Xzn0cSUqCf/+9/Bz8WemgBERGZRleB3rFjR/8p1Nq1axevNhERUSpYvTropv3TT4Mft9ooLbUeZ6sW6K1ayT8HDQL27gXOnAF+//uGx/UWs3feqbt5foHn4tZyeJyvbe3bA2vXyqcPW7ZMLs4jfbEgaoFu9t96fX3kx/fsMacdREQURleBPnr0aEjnhhN+++23cWkQkVXw3JTiYnbiahbY8xdynGzCiVag/+1vkdc1uJg1dL+L1DabTe5V17ueGdT+FqL9bsye0yegB91WVBT+eKInCCTN+P9OXMyO1Ogq0P/v//7PP8z9k08+wZeB34iTKh4KIJ60tDSMGzeO2QmI2YltzKZNDdmZWaDn5kZfxorHoKsVpMOHAz/7WWzrxiDifhfLPAHRhu4vXqx8v1UL9GjvRxdfbHxbIvEV6PX1cE6dGv64jlPsUeLw/524mJ24zMhM1ztw7969sWjRIqSlpcHlcmHMmDF47bXX4IrTh6i6ujrcf//9GDt2LLp27YrMzEykpaWhTZs2uPzyyzF//nxUVVWFrefxeLBgwQJcccUVyM7ORkZGBnr06IHZs2fj2LFjqq/3zTffYMaMGejatSvS09PRpk0bjBkzBm+++WajtoOT6YnH6/XixIkTzE5AzE5wzz/fkJ1ZBXpaGvDcc9qW03O/GdQK2b/8JXovqIHFbMT9LpZ9MVrbunYF+vfXv168xfo30q0bMHmy8e1R4yvQN2wAKivDH2eBLgT+vxMXsxOXGZnpHuL+4osvIjs7GwBQWlqKm266Ca1atcJFF12EUaNGYfTo0YqXK0NnkdWgpqYG8+fPR1FREQ4dOoSamhq43W6UlZVh48aNuP/++3HJJZegvLzcv05dXR0KCgowa9YsfPrpp6ioqEBdXR327duHZ599Fn369MHnn38e9lorV65E//79sWjRIhw6dAhnz55FWVkZ1qxZg+uvvx7Tp0/3D+/XizufeLxeL3bu3MnsBMTsLObAAeDqq+XTlr39tqZVvB6PPMP7u+/Gt22APKP5zp3A+PHRl7XiEHe1NrVpE31dgwt01f3O7db/hFra5pvpPVCie6Ma8yXO8uXy8fbnnWdsm5RMngwUF6t/CRZYoNfWArfeClxwAXDPPbHlSXHB/3fiYnbiMiMzXePy1q1bB9u5b+R9PyVJQm1tLYqLi/33hZIkSfWxaDp37oyhQ4ciPz8fOTk5KC0txTvvvINDhw4BkHu9Fy5ciDnnZv+dO3cuCs/NDOxwOHDLLbegY8eOWLJkCQ4fPoxTp05h0qRJ2LlzJ5o3bw4AKCkpwdSpU1FXVwdAHikwZcoU7N69G6+//joA4JVXXsEll1yCX/7yl7q3gceYiMfpdGL06NGJbgbFgNlZzOzZDZPBTZ0KjB4N5OREXMX57rvAb35jQuMgzwp+wQXalrViga4mPz/6MgYW6BH3u1gKOi2z00+YED7beKLnLYj1GHRALopHjpQvZszzM3o0sGSJ8mOBs8r//e/Ayy/L1596Sv4C4Re/iHvzKDr+vxMXsxOXGXVdTK/g60n2zejuu0+phznWwhwA2rRpg6NHj4bdf/fdd6Nz587+2wcPHgQAlJeX47mAYYpz5szBY489BgCYOnUqLrzwQkiShIMHD2Lp0qWYNWsWAODZZ59F5bkhXpmZmdiwYQNyzn2AtNvtWLZsGQBg/vz5mDVrFhw6T4fCb8fE4/V6ceTIEeTm5sLOoX5CYXYW88EHDdddLmDhQuB3v4u4ivTMMzBtiqpIp+wK1Zjiy4q+/17f8hH+90Xc7+LVg6503HZtrf7XMpIRh0FEOs87IP+9GdGLXV4OfPSR8mOB7Q0dyfLb37JAtwj+vxMXsxOX5Ya4+wQW5qH3hV6M5PF4UFJSggULFgTd/4Mf/AAAUFhY6O8FB4CJEyf6r/fs2RN9+vTx337//fcVr48cOdJfnIc+R0lJCbZu3RpTu0ksHo8HxcXFzE5AzM7iop2fGYBt0ybjXi/aRGl6CnRRetCjjFDwU/gCPKIIpzeLuN/F0qsdYb4Yv8zM8PvOnNH/WkaKd4F+4YXGDjE/eVL5/sD2/u9/wY8l+ndMfvx/Jy5mJy4zMtNdoPt6yvVcGss3tN7pdKJLly545JFH/I8NHz4ct956KwBg+/btQeudF3IcV+Bt37L19fXYE3C+z0jrKL0GERFZ2PnnAz/5ifrjRhToVutBj9YDG6tI5x+PJJaCsqQk+jJKvU6JLh6NKNDPHX6n6K239LUnGrXPaDzNGhFRwuj6VHHgwIF4tSMmU6dOxYIFC9D03LFqZWVlQY+3bNky6HZmwLftpaWlAORh8YFfIkRaJ3A9JfX19aivr/ff9s0w73K5FGe6t9vtcDgc/m9iHA4H3G636pcaDocDdrsdbrcbdrsddrs94gz6vmMk3G530HU1aWlp8Hq98Hq9cDqd8Hq9qt8S+b4wCWy7x+NRHfbh29bAtmvZVpfLpantgcv4tiNa2wO3NbTtvt+ry+ViThbOSantgc/HnIK3NRE5hZYlXq8XdsjfQOs7WCg2UtOm8PbpA8d77ykvkJGhOSe73R7WZsnpVP1dmpVTaCkltWgBd8jfslJOekk2G7x33QX7++9DGjIEnr/+FTg3aawvb7fbLW/Hhg2QfvMb4OxZeH71K93H03natYM3YBvU9qfQvy/p9Gl4zu2jidifbDab4rZKDgfcLpe2/SnCFyyuJk3CtjkePPX18J7bPqVSXe29ku972v4/GfU5wnefr0OM/5+U257onJTa7nvOSMszp8TnpLSt8Tp7WVAb9Cycr2XSmTjo3r07nnzySdTX1+PQoUN49913UVZWhmXLluGLL77AqlWrkJ+fHxZMpNuBx85rXSdwPSXz58/HvHnzwu5fu3Ytmin8w83Ly8PAgQOxfft2ZGRkoFevXti8eTNOqgw5GzBgAPLz87F+/Xr06dMH7dq1Q2FhoeoOMmrUKGRkZGDlypUoKChAbW0t1q5dq7is0+nEuHHjUFpaip07d2L06NE4cuQIiouLFZdv27Ythg4dir1796K2tta/HYcPH1ZcvmfPnv7t69y5s387qlWGuw4ZMsS/fcOGDfNvhxrf9m3YsMG/HZtUhslmZmb6t6+kpMS/HYEjKXyKioqYkwA5AQ37065du/z3MSdZwnKSJFwbsvyJEyfQAfJopIGqLTBOncOBA99+i95qC2RkaM7pB0eO4PyQ+ySHQ/V3aVZOLUPuL23SBBtD1lPKqa53bzTdvVv1+UPZKirgeOYZ+fqBAzhQXY2dM2YAAPr27QsA2LhxI/r26oV2110H26lTAADnufle9Pi4Vy/UntuGSPtT6N/XKUnCns2bE7Y/ddyxA4MV1qmuq8OGwkJt+1OEAv2TDRvwQ9VHY+A73VqIowcOoHjlSowaNSrs7wuA4t8l3/ei/3+K1+eImpoaZGZm8v9TCKvlFPg5YsyYMQDkz5lKmJM1clLan86YMFLLJhkxBt1kJ06cwIABA/znNP/xj3+M9957D/fffz/mz5/vX668vBytWrXy354wYQI+ODdhUadOnVBSUoL6+npkZGT4C/HZs2fj6aef9q/zxRdfYNCgQf7bCxcuxMyZMxXbpdSDnpubi2PHjqF169Zhyyf6G6BQ/KYuuAe9qKgIY8aMQXp6OnOyaE5Kba+rq8Pq1atRUFAAm83GnJDAnNxupIUUG97f/Q72+fPlHnQThoZLCxfCW1YGx333KS9w+jS8TZtq60F/9VU4brkl+PkzM+EOGb3lX96knKQZM2BfvNh/v3vjRkghE6gp5eR97TXYp01TfX4tXOcKPK/Xi1WrVmHs2LFIP3oUdq0z40d5Xh+1/cn+i1/A8dJL/uXchYXAqFGJ60FfsQJOhUMqpMpKuDMytO1Pr70GTJ+u/Hs5cgRpubmKj8Vk+HBg/fqwu73TpsGzaJHcg65wKEFoPj583zO/B72oqAjXXHMN0tLS+P9Jpe2Jzkmp7ZIk4aOPPsKYMWOQpnIIDHNKfE5K21pWVoaOHTuisrIybOS1UXR9Ogo8HvuWW27B3LlzIy7/n//8J2hStf/7v//T2Txl7dq1w2WXXYb3zg1ZXLduHQCgX79+Qcvt378/qLjev3+//7pv2fT0dFxwwQX+b2kCl1G6HfoagdLT05GuMPNsWlqa6s4HIGhWeC3DDgOXifS8SstEW973hxt6XU1g2x0OR9QZ7gPbrmVb9bQ9cBktbQ9cRq3taWlp/vuZk7pE5xSIOakzPSeFf952ux1wueB44YWor28EW00NHJFO2dW0qfacFN7fbVHe34H452R7+GFg/37g66+BWbPgvOwy1WOIg7a1U6eoz621rb4PO06nE3YDvvdX2m7FnB56CNi3D9ixA5g5E86rrvJve0L2J5U5DWxNmmjfnyL0oId+4dVo5w7FC2V/9VXYb71V+VzziPx3mfLvexHE6/+Tb2Jm/n9SZpWcApfxvWdGqxGYk7pEfd7Tsm5j6SrQfaczs9lsOHVu6Fok//rXv/BswDlK9RboRUVFGDBgANq2bRt0f2lpKT777DP/bd+w87FjxyI9Pd3fi/3222/7C/Rdu3Zhd8BQvgkTJvivjx8/3l+gr1u3DmVlZf4e7zfffNO/XKdOnXCx0mldojB6NnuKP5vNhrZt2zI7ATE7C1H7hvqXvwRefNGcNrRvL59OSklGhvJEY2qU/ilbYQb3vDzgP//Rv56Wc41rFLTfGTnLeDRdugAqQ3kTwohT8UUqwtPSgDFjAJVhsbqpDJcFIJ+PPXQGd7IU/r8TF7MTlxmZ6R5fqLdRgedM1+u5557DRx99hLFjx6J///5o1qwZSkpK8M477+D48eP+5X70ox8BAHJycnDHHXf4h6g/+eSTOHXqFDp06IBFixb5l8/Ly8ONN97ovz179mwsWLAA1dXVqKmpwfDhwzFlyhTs2rULb7/9tn+5OXPm6D4HOmDOCe3JWE6nE0OHDk10MygGzM5C1Ap0s4pzABg7Nvw8zj5635uVlrdCgR4rAwv0oP3OhAl0LEvt70HPZ4dIs7g3aQL8+MfGFejRxDB/AJmH/+/ExezEZUZdF9dXOH36dKOf4+zZs/jwww/x4YcfKj4+YMAAPPXUU/7bjz/+OHbs2IGPP/4YHo8HCxcuDFq+VatWeOutt9CiRQv/fV26dMFrr72GSZMmob6+Hrt378aDDz4YtN60adNw5513xrQNPMeheDweD/bu3YsePXrE9KUMJQ6zs5BEF2rXXAO0aaNeNGk4J3sQpX/KCsPehaHnFHNRBO13ZvagW43aKAs9nRTRetBvu00ehWKGSD3slHD8fycuZicuS54HXauKigqsO3f+8lj98pe/xO23344BAwagXbt2cDqdaNq0KfLz8zF+/HgsWrQImzdvDhoCn5GRgVWrVuGFF17AkCFD0LJlS6Snp6N79+648847sXPnTgweHD7H6vjx41FcXIzp06cjNzcXTZo0QXZ2NkaPHo3ly5dj6dKlUY+doORSW1ub6CZQjJidRShNJFVXZ97rFxTIP43q5VZ6nljPDW4FBvagAwH7HQv06PdFolagOxzyIRlOJ3D11frbRkmJ/+/ExexITcRZ3AMnhQPkY9B9BXdmZiZycnIU1/N4PDh+/HjQ+RlbtGjhPy94qqiqqkJWVlZcZ/kjIrKs/fuB80NOTHbbbUDIyKa4aNIEOHoUaNsWeOMNYMoU5eX0TGi2Zo18/G+gAQOAbdtibmZCHT8OdOjQuOdQ+v19+ilwxRXGP68Itm8H+vcPvq9DB+DcWWc0OXAACPn8BUAe8eA7vc9f/gLcfXfs7WwsUfMhImokM+q7iEPcfQV5YA3vu15VVaWr4O7WrVuMTRQfh7iLx+PxYPv27ejXrx+HHgmG2VmI0hB3Aw59iuiKK4CKCuCBB+TiHDCuB12px1nkIcAGD3H373fsQQ+m9/esNioj8LnvuAPYvVueIO+778wdmUKWwf934mJ24rLMEHff6RuU7ot28S17zTXXGN96Qaidx4+sy+v14vDhw8xOQMzOQpQK9HiOpLLZ5HM679gBTJ7ccL9agf6DH+h7/l69Ym+bFRlYoAftd4meeyCRlP7WDhzQ9xzt2infH1i4Z2QAL70kj1L5+9/1PT8lDf6/ExezE5cZmcX1oGpfb3vXrl3x29/+Np4vRUREVqNUqH3wQfxer2lT5cm41Hokf/c7fc9/7vSbScOIkQVKH1RSuQfdiNPvqOWi9ncs8kSFREQUJmqBLkmS/6J2f+jFZrMhMzMTgwYNwgMPPIDPP//cf15xIiJKEWb3pKpNemZUD7pS8RUwSWlKUhrql8oFeseO4ffddpv+57nrrvD71P6OWaATESWViAW61+sNugANQ9vvuuuusMd9F7fbjYqKCmzZsgXz5s1Ddna2KRtDREQWYnaBrjZkW2+PZCTz5wffXr1a/3MkE6WMU7lAb9ZMPr1foN//Xv/zKH3ZpPb3Gum86UREJBzd50GPMOk7ERFRA7MLdKXzlAPGFui/+x0wZAjw3//KPaOp3oOuVIw3NvfRoxu3fqKtXClP3vbFF8ANNwCdOul/DqW/TRboREQpQVeBvnjxYv/13r17G94YIiJKIvEs0Hv0APbuDb5P7fhfIwt0ABgxQr4kg9mzgWeeiX19pQK9sT3of/lL49a3glGj5EuslP421f6OlQp0pxNo0UI+owEREQlFV4F+8803x6sdSc1uj+tcfBQHdrsdPXv2ZHYCYnYWEq8Cfc0a4MILgc6dtS1vdIGeTJ58EujSRT5nfH4+8H//p2/9c8V40H6nt0Bv1gx44QXgs8+AiRPDzyOeivT0oDdrFn7f4MHA228D998PLFliaNPIOvj/TlzMTlxmZKarQD958iSWL1/uv52bm4uf/OQnisu+8847KCkp8d+eOnUq2rRpE2MzxcbzG4rH4XCgV7KdUilFMDsLMapAv+IKeUg5APzpT8CVVwKVldrXZ4GuLi0NuOce+Xosx9OfK8aD9ju9BbrTCdx0k3whmZ4edKUC3W6XJ6z7+9+BnTuBzz+X52g4e1Z5Yj8SEv/fiYvZicuMuk5Xgf7vf/8bd911l//85suWLVNd1jeRnG/ZjIwMzJw5sxFNFZc7lSfMEZTb7cbmzZsxePBgONWOayVLYnYWYlSB/u67wJEjQMuWwPnny/epzdiuhAW6NrHsL+f+vwXtd3r/5zGHcEp/s2q/p0jns2/eXP5ya9cueb6EO+8E3n+/8e2TJGNOKUeNwv934mJ24jKjrtPVR7/63LfrkiShXbt2mDRpkuqyP/nJT9CpUyf/pHKFhYWNaKbYOHxFPHa7HZ07d2Z2AmJ2FmJUgZ6RAVx0UUNxDugr6nh6Km1i6RUIGOLu3+/05m7E+diTjZ4h7koFemDxnJ4u7z+5uUB9vTHtO3dmH0os/r8TF7MTlxmZ6XqF3bt3A5B7x6+44oqIDbTZbLj88svD1k1F3PnEY7fbkZ+fz+wExOwsxKgCXWkSLD29d2oFIAvDYI3oQQ/a79iD3nh6hrhH6kEPZdRcQhwZaAn8fycuZicuyxXo33//vX/IeocOHaIu365dOwByj/v3338fQ/OSA4e4i8ftduOTTz5hdgJidhaipUBPSwP69lV//M9/bvxQWrWecg7RDdbIIe7+/U7vvscvSsLp6UHX8/v76U8jP/6rX2l7HrNPoUiK+P9OXMxOXJYb4n769Gn/9QoNp+6oDJjEJ3DdVMNzx4tHkiRUV1czOwExOwvR8iG+vBx46CH1x+++u/Ht4HmitWnEEPeg/Y4FeuPpKdCVRDrloMohh1KzZsCzzwLbtkV/fhYVlsD/d+JiduIyIzNdBXqrVq0AyA1bv349vBGOQfJ4PFi3bp2/xz0rKyv2VhIRkXjOno38+LffysVzZqby4/n5xrSDx5pr04ge9CB6e1c5xD2c0u9Ez4iPSF+2qH1h1aKF/HPAAODnP4/8/CzQiYjiRleBnp+f7//W4OjRo5g/f77qsvPnz8fRo0f9t7t27RpbC4mISEzRJqTynXpTrUDX27Oq9q02h7JrY1SBzh70xlMq0PV88RGpQFf7fQcW7j/6UeTn5xB3IqK40fXf+PLLL8eWLVtgs9kgSRIefPBB7Nq1C7fffjt69eoFm82Gr776CgsWLMAbb7zhX85ms2Ho0KHx2gYiIrKi2trIj/vO32xUgU6N04gh7lHvi4Q5h2vdOvw+PRMTRfqyRe2xwALd15uuhj3oRERxo6sHferUqf7rvuL7jTfewOjRo9GpUyd07NgRo0ePxhtvvBE2Pj9wXSIiSgFnzkR+3FcQxlqg33hj8O0//1l92YCzigAAxo2L/NypiD3o1nHBBeH3RZqroaAg+PacOerLqvy+pcACPdq8DSzQiYjiRleBfvHFF+OHP/yhv/j2FelKF9+x5zabDWPGjMEll1xifOuJiMi6ovWg+8RaoN9zD9C5s3z9yiuBH/9YfdmiIiA7u+H1IhXzqappU/3rGFGgb9+u/3WTXWYmEHgY4bx5QO/e6svPnQu0bStfnzgRGD5cfVm1/Sqw1zxagR5tfgkiIoqZ7q/LlyxZgkGDBuHYsWMA4C/ElUiShE6dOmHJkiUxNzAZOGIZNkgJ5XA4MGTIEGYnIGZnIdF60H1iLdD79QP27gVOnQI6dYp8rHlGBlBaCuzaBfToEVsxmuz0nE/b51wxHrTf6T0+WcNZYVLS734H3HCDfDx6x46Rlx0yBDhwAKiuBtq3j7wvqOxXNj0FutYv3yiu+P9OXMxOXGZkpvtM6+3bt8emTZtw0UUX+XvLQ/nuHzRoEDZu3KjpnOnJzIwT2pOx7HY72rVrx+wExOwsROuHeLVCXMvQ54wMuRddy0Rwdrt8znUW58oa0YMetN9x+LNx8vOjF+c+zZsDHTpE3xdYoCcN/r8TF7MTlxmZxfQKubm52LJlC958801cf/31yM/PR9OmTdG0aVPk5eVh8uTJeOutt7Blyxbk5eUZ3WbhuDjbqXBcLhdWrFjB7ATE7CyksR/iT50yph2kTSN60IP2Oxbo1qYy14DHN2kj0DCBoxoW6JbA/3fiYnbiMiOzGGaEafDTn/4UP/3pT41qS9JyxjLxDiWU0+nEsGHDmJ2AmJ2FNPZDfHW1Me0gbRoxSVzQfscC3dpUetDt7EEXDv/fiYvZicuMzDiugkhFRiy9SWQJzM4iTp5s3Ppaj2GnxAkoxv37nd7ehblzDWwQRaVlkrhoh5ecPm1ce6hR+P9OXMyO1DS6QK+rq8PGjRvx3nvvYenSpfj888+NaFdScbM3QThutxsrV65kdgJidhaxfz+wdav64/PmRX8O9tKZr39/fcuf28+C9ju9+960afqWp8ZRKb69oRMfDR6s/hw33AB4vQY2imLB/3fiYnbiMiOzmPvoi4uL8eijj2LlypU4G3C6jdmzZ+Oiiy7Cj3/8Y9TU1AAAhg8fjocffrjRjSUiIkH8/OfK92dnA8OGAb/+dfTn4LF55uvSBfjyS+3LG3GatWjDqclYasMzQwvuZ54Bpk8HysuBEyfCl12zBhg7Ni5NJCJKZTH1oD/zzDO49NJL8a9//Qv19fVhs7nb7XZ06NAB69atw7p16/DUU0/hDIcqEhGlhspKYMOG8PtffVWe+O3f/wZatYr+POxZMJ+W2fADGVGgc1Z9c6kNXw8t0C+7DPj6a+D4cWD06PDlf/hD49tGRET6C/SXX34Zv/nNb+ByuSBJEmw2m+K50G+44Qb/9TNnzqCwsLBxLSUiIjEsWKB8f3q6vufhEFrz5efrW96IAj3ajOFkLLUvYRROm+un9iUKR7kQERlOV4F+4sQJ3HXXXf6i3GazKZ4HHQCGDRuGFi1a+Iv3jz/+uPGtJSIi61u7Vvn+Jk3U1/nRj+LTFtLn3nv1LX/wIFBV1XD7u+/Ch0NHMmIEC3SLkEaOVH9Q7by/PBUiEZHhdBXo//jHP3D63MydvsJ88ODBikW60+lE3759/Y99qeeYNiIiEpdab1ukAv2RR+LTFtInLw949115SPPMmcD110defv58ID8ftrVr0XfhQqR17Qr873+R1/nDH+RjlydPBhYvNqzp1DjS8OH6VyotNb4hREQpTleBvnr1agDwD21/99138b9z/4iVhrl3797dv/z+/fsb21YiIhKBWo9opCHuAweG35eTY0x7SJ+f/AT4+GNg4UJtQ94rKuCYMgXnrVyp7fmvvRZYvRp44w2gW7fGtZUMsWfSpMjzD6gNfz83GTARERlHV4G+b98+/9D2kSNH4tprr424fFZWlv96RUVFTA1MBmac0J6M5XQ6UVBQwOwExOwsQG0Sqkg96ACkZ58NvuPFFw1qEMWsZUtNi9nKy7U/Z+vWMTaGDHPNNf6rUtOmOO/pp2N7z+QEwAnF/3fiYnbiMiMzXQV6YJHds2fPqMtXVlb6r3s52Q8JppbnYBYWs0swtQ/tUQp0zJiBszNnQurfH7j/fmDCBOPbRvpomW1fr4Av7ylBnntOnoV94EDg1VdR26JF5OXVetBZoCcc/9+Ji9mRGl0FesuAb9JPaJgEZs+ePf7rreLxT14QZpzQnozldruxYcMGZicgZmcB77+vfH+UWdzdaWkouvZauLdsAR57TP18zWQeo/93p6UBGRnGPifp160bsGoV8MUXcE+YEP09U61AP3w4Pu0jTfj/TlzMTlxmZKarQO/SpQsA+ZjywsJClEcY0rZ161Zs2bLFPyS+WwofZ5amNtyTLCstLQ3jxo1jdgJidgn2zTdAfb3yY1F60JmdBWVnG/t8WVn6z7VOcaVpv1Mr0H/xi/g0ijThe6a4mJ24zMhMV4F+xRVX+CeIq6mpwVVXXYV169YFLXP69Gm88847+NGPfhR0GrbLL7/csEaLhsP7xeP1enHixAlmJyBml2D/+If6Y1F60JmdBRndg57Co+msqtH7XQrPMZRofM8UF7MTlxmZ6SrQp02b5r9us9mwbds2XHnllQDkXnVJkvDSSy9h8uTJOH78eNC6N954owHNFZPH40l0E0gnj8eDTZs2MTsBMbsE275d/bEoPejMzoKMLqh5/LnlaNrv1HrQAaCqyvhGkSZ8zxQXsxOXGZnpKtAvvfRSjBs3Lui856HnQPcV6r7TrtlsNvz4xz9Gv379DGguERFZWvv26o9FmySOrMfogpoFupgiFeicKI6IyFC6CnQAWLJkCbp37+4vwtUugFysd+/eHS/yVDlERKkh0jHLUYa4kwUZXVBziHvyOX060S0gIkoqugv01q1b43//+x8KCgr8veWhPeq+yzXXXIONGzciJyfH0EYTEZFFqU0QB7AHXUTNmxv7fOxBF9Mll6g/xgKdiMhQMZ3DpnXr1vjwww+xefNmvPPOO/jss89w8uRJAEC7du1wySWX4LrrrsNll11maGOJiMji1Ia7du3KHnQRGT3jOnvQxTR6tHzqQyUc4k5EZKhGnWR28ODBGDx4sFFtISIi0dXWht/XoQPwwgs8vRaxB11UI0YAd9wBLF4M1NUFP1ZTk5g2ERElKd1D3Ek/Gz+UCsdmsyEzM5PZCYjZJVhogf7EE8CxY8DVV0ddldmlAPagW46m/c7hAJ5/Xh7OPnBg8GMc4p4wfM8UF7MTlxmZNaoHvaSkBIWFhSguLkZpaSlsNhtat26NAQMGYMyYMejSpYtR7RSa09moXzMlgNPpxOjRoxPdDIoBs0uw0FMu6egxZXYpgD3olqNrv7Pbw+clYIGeMHzPFBezE5cZdV1Mr/D999/jN7/5Dd555x3Vc8E5HA5cd911+Mtf/oJOnTo1qpGiM+OE9mQsr9eLI0eOIDc3F3Y7B5qIhNklWGVl8G0dBRmzSwGRZvmnhNC937VoEXybBXrC8D1TXMxOXGbUdbr/Ir744gv07dsXb775Jtxud9Cs7YEXt9uNt956C/3798fWrVvj0XZhsEAXj9frRUlJCbMTELNLsNAe9JYtNa/K7CwqLc2452rb1rjnIkPo3u9Ce9B5DHrC8D1TXMxOXJYr0MvKynD11VejrKws6nnQbTYbJElCWVkZCgoKUFZWFq9tsDwOcReP0+nE0KFDmZ2AmF2ChR6DruM0XczOoows0HkMuuXo3u9C92nO4p4wfM8UF7MTlxmZ6SrQ//jHP/qPNfcdIK/Wgw40HERfWlqKP/7xjwY3XRxqhwGQdXk8Hnz99dfMTkDMLsFCz4Ou49znzM6i7rrLuOdK8UPerEj3fpeREXxb6cwNZAq+Z4qL2YnLjMx0Fej//ve/g2aukyQJgwcPxgMPPIAFCxbgH//4Bx544AFceumlQUW6JEn497//bWzLBcLhK+Lxer3Ys2cPsxMQs0uws2eDb+so0JmdRf361w1D0xvTm/7zn7MH3YJ073fNmgXfZg96wvA9U1zMTlxmZKarj/7IkSMA4B/evmDBAsycOTNsuXnz5uHll1/GzJkz/QW9b10iIkpSkhReoKenJ6YtZJz27YFdu4C1a4E+fYBBg8LPha1m7lxgyBDAZgN++MP4tpPMwQKdiCiudPWgtzg3c6fNZsOIESMUi3OfGTNmYOTIkf6e9MzMzEY0k4iILM/tlov0QDp60MnC2rYFJk8GevfW14veogVQUABcc418ii4SH4e4ExHFla7/ln379vUX3L179466/IUXXghALuj79+8fQ/OIiEgYob3nAHvQk5GeTEOLORJfaP5K+z0REcVMV4E+ffp0//Vvv/026vIHDhzwX58xY4aelyIiItEofVBnD3ry6dBB+7Khw6FJfKH7NAt0IiJD6SrQb7zxRowdOxaSJKGwsBArV65UXXbFihVYvXo1bDYbJk6ciOuvv77RjSUiIgsLncEdYIGejPQcssYCPfmE7tMuV2LaQUSUpHRNErd+/XrMnj0bX3/9NQ4fPowJEybguuuuwzXXXIPc3FzYbDYcPnwYq1atwjvvvANAHgp/++23Y/369arPO3z4cMX7S0pK8O9//xvr1q3D7t278f3336OqqgrZ2dkYNGgQZs6ciZ/85Cdh63k8Hrz00ktYunQpdu3ahbq6OnTp0gUFBQX43e9+h44dOyq+3jfffIM//vGP+Pjjj3Hs2DFkZmZi4MCBmDlzJiZPnqznVxXEzuPuhGO325GXl8fsBMTsEqiRQ9yZnSD0FN0s0C1P934XOgcBe9AThu+Z4mJ24jIjM5skhc7oo85ut4edZi3wdqBIjwU1wGaD2+1WfOyJJ57AfffdF3H922+/Hf/4xz/8t+vq6nDttdeisLBQcfmcnBysXr0aF198cdD9K1euxMSJE1GnMjPtzTffjMWLF2vaJp+qqipkZWWhsrISLVu21LweEZGQ9u0DevQIvq+ujsehJ5trrwXef1/bsqtWcfb2ZLN0KXDTTQ23Bw4Evvgice0hIjKRGfWd7q8AJEkKO8e50sVXyKo9HniJpkuXLrjtttvwhz/8ATfeeCOczoaO/wULFmDNmjX+23PnzvUX5w6HAzNnzsSDDz6IvLw8AMCpU6cwadIknD592r9OSUkJpk6d6i/Oe/fujUceeQRTpkzxL/PKK6/g+eef1/vrAmDOCe3JWB6PB9u2bWN2AmJ2CdTIIe7MThDsQU8quvc7HoNuGXzPFBezE5cZmeka4g4grAc5Wo9ypMejFef5+flYtmwZJk+eDIfD4b9/7NixuPHGG/23P/roI1x11VUoLy/Hc889579/zpw5eOyxxwAAU6dOxYUXXghJknDw4EEsXboUs2bNAgA8++yzqKysBCCfDm7Dhg3IyckBII8aWLZsGQBg/vz5mDVrVlBbKHllcPZhYTG7BAn9oJ6WJp//WgdmJwAW6ElH137HAt1S+J4pLmZHamLuQTfiEs0NN9yAG264Iawg/vGPfxx0++y5fw6FhYVBQ9QnTpzov96zZ0/06dPHf/v9gOF5gddHjhzpL85Dn6OkpARbt26N2u5QLOjF43A40KtXL2YnIGaXQKHnQ9Y5QRyzE4Se86CzQLc83ftd6H69d6/xjSJN+J4pLmYnLjMy09WDfvPNN8erHbrs2bMn6PYll1wCANi+fXvQ/eedd17Y7R07dgQtW19fH/R8SusE2r59OwYPHqyrvWrH2JN1ud1ubN68GYMHDw46pIKsj9kl0MyZwbd1FujMThB6smGBbnm69zulL2g2bQKGDDG+cRQR3zPFxezEZUZdp+svYvHixfFqh2anT5/GL37xC//tCy64wD/DellZWdCyoQfuZwacGqa0tBQAUF5eHtSbH2mdwPWU1NfXoz7gGMyqqioAcg+/S+E0JHa7HQ6Hw38sg8PhgNvtVh1d4HA4YLfb4Xa7YbfbYbfbFZ/Xx7fDu93uoOtq0tLS4PV64fV64XQ64fV6VY+zsNlscDqdQW33eDzwer2Ky/u2NbDtWrbV5XJpanvgMr7tiNb2wG0NbbvL5cLJkydx9uxZ2Gw25mTRnNTafvLkSUiSxJxCttXQnA4dgmP+fMDlgv2+++Dt2RP23buDlykvD/udRnrfC9zvfNvCnBK7PynlZLfZoLX/wOV0Kp6GiznFP6dIbQ/c1rNnz4btd0pt91332O1hHx69v/oVPBs3Im3pUkj//je8V1wBx913w2uzMSfE7/Oe7z3T6/X6/+dxfwpve6JzUmq7JEmq+50Pc0p8TkrbetaEw3qE+srm5MmTmDBhAjZv3gwAaN++PT744AM0bdoUQPgx7ZFuB05ip3WdwPWUzJ8/H/PmzQu7f+3atWim0IuQl5eHgQMHYvv27cjIyECvXr2wefNmnDx5UvH5BwwYgPz8fKxfvx59+vRBu3btUFhYqLqDjBo1ChkZGVi5ciUKCgpQW1uLtWvXKi7rdDoxbtw4lJaWYufOnRg9ejSOHDmC4uJixeXbtm2LoUOHYu/evaitrfVvx+HDhxWX79mzp3/7Onfu7N+O6upqxeWHDBni375hw4b5t0ONb/s2bNjg345NmzYpLpuZmenfvpKSEv92hI7MAICioiLmJEBOQMP+tGvXLv99zElmeE6ShCvuvx+tv/pKvr12LY4tX47OCs8V+jpa9qeioiL/deaU2P1JKacfHD6M81VbFWz1hg3wKBxnyZzin5MSpf3J93sP3O98lHIq3roVoSfHtW/dii1//CMuffBB2AA4PvgAaN0aR666ijkh/p/3ampqkJmZyf0phNVyCtyfxowZA0B5vwOYk1VyUtqfzpw5o7rdRtF1mrVE2rt3L6655hrs378fAJCbm4vCwkL06tXLv8z999+P+fPn+2+Xl5ejVatW/tsTJkzABx98AADo1KkTSkpKUF9fj4yMDH8hPnv2bDz99NP+db744gsMGjTIf3vhwoWYGTqM8xylHvTc3FwcO3YMrVu3Dls+0d8AheI3dcE96EVFRRgzZgzS09OZk0VzUmp7XV0dVq9ejYKCAv+ZJiK1nTlF3lbFnE6cQFqXLkHrSG3awKYwwsgV8k1ztB50336Xdm4YLXOyXg+F/d574Qj4PxmJq7YWUDhejzlZpyfpzJkzYfudUtv9PeiffQanwnB2KTcXtiNHgu7zejzMCfHtQS8qKsI111yDtLQ07k8qbU90TkptlyQJH330keJ+58OcEp+T0raWlZWhY8eOcT3NmhA96J9++imuvfZa/xD2AQMG4MMPP0TnzsH9Nf369Qu6vX///qDi2lfcBy6bnp6OCy64wP8tTeAySrdDXyNQeno60hXO95uWlqa68wHBkw34/hAiCVwm0vMqLRNted8fbuh1NYFtdzgcUSdOCGy7lm3V0/bAZbS0PXAZtbanpaX572dO6hKdUyDmpM6wnAJOU+mjVJxHep1IOSm9ZzKn6Mubtj+pfGhSbNu5EW6qjzMnRYl434v0WSXwfqfKvAKhxTnAnELF6/+TzWaDzWbj/qTCKjkFLuMrEKPVCMxJXaI+72lZt7F0z+KuZPHixRgxYgRycnKQkZGBzp07Y8KECXj99dcb/dxvvfUWrrrqKn9xXlBQgA0bNoQV54B8+rXAAvntt9/2X9+1axd2BxwfOWHCBP/18ePH+6+vW7cu6Fj2N99803+9U6dOuPjiixu5RUREglMo0CmFROh5oBSgc/JHIiLSR/XrhtLS0qDJ2DIyMrBkyZKgY7AlScKkSZPw3nvv+W8DwLFjx7BixQqsWLECL730Ev71r3+hRYsWuhv31ltv4frrr/c/b7t27TB8+HD84x//CFouNzcX119/PXJycnDHHXf4h6g/+eSTOHXqFDp06IBFixb5l8/Lyws6j/rs2bOxYMECVFdXo6amBsOHD8eUKVOwa9euoCJ/zpw5Ub/NISJKeiYcf0UWNnMm8MIL0Ze76KL4t4XMZ0LvERFRSpNUfPTRR5LNZpPsdrtkt9ulm2++OWyZP//5z5LNZvNffMva7fag+66//nq1l4nooYcekgBEvYwYMcK/zpkzZ6Qrr7xSddlWrVpJn332Wdhrvf/++1J6errqetOmTZM8Ho+u9ldWVkoApPLy8pi2nxLH4/FIBw8e1J05JR6zM0FhoSQB2i46MDtBeL2S9LOfRc69eXNJ+ve/E91S0kD3fnf4cFz2f9KP75niYnbiKi8vlwBIlZWVcXsN1SHu27Zt8xXwAICpU6cGPX727FnMnz/ff9xL6OzmvvskScJbb72FrVu3xvwlgh4ZGRlYtWoVXnjhBQwZMgQtW7ZEeno6unfvjjvvvBM7d+5UPI/5+PHjUVxcjOnTpyM3NxdNmjRBdnY2Ro8ejeXLl2Pp0qVRj51QE+t6lDh2ux35+fnMTkDMzgS1tXF5WmYnCJsNWLoUOHwYUPh/ip//HDhyBAg4lIysS/d+xyHulsH3THExO3GZkVnUAh2Qi95Ro0YFPf7RRx/h1KlTAOQiXukSaNmyZbob9/DDD6s+d+Bl3bp1Qes5nU7MmjULGzduRGVlJerq6rBv3z787W9/Uzx23adXr15YvHgxDh8+jPr6epw6dQoff/wxpkyZorvtgSLNckjW5Ha78cknnzA7ATE7EwScrcJIzE4gNhuQmwsonKEE3boB2dnmt4lionu/Y4FuGXzPFBezE5cZmakW6AcOHAAg94T369cvbMY6pfP29ejRA59++in27t2Lm266CZIk+XvWP/vsMyPbLRR+OyYeu92OPn36MDsBMTsT1NXF5WmZnYCUsuJcLULRvd+xQLcMvmeKi9mJK6E96L7ecUAuvEP997//Dbpts9nwzDPPYMiQIejevTteeukltGvXDoDcw75v3z6j2iwc7nzisdvtaNeuHbMTELMzgdYe9HHjdD0tsxOQUjHOAl0ouve7jAztT87ewbjie6a4mJ24Elqgl5eX+3u/Q0/CXldXh127dgUdd96yZUuMHTvWf9vpdGLEiBH+oe6VlZWGNlwkLp6SRjgulwsrVqxgdgJidibQUqDbbMBTT+l6WmYnIKUPKhrOR0vWoXu/s9uBefO0LRun+SpIxvdMcTE7cZmRmWqBXlNT479eVVUV9NjWrVvh8XgAwD+MfejQoWHfKLRt29Z/3ev1GtJgIrPwuCBxMbs401KgHzkC9Oyp+6mZnWDYg54UdO93DzygrUiP0+Ew1IDvmeJidqRGtUDPzMwEIBfgu3fvDnpszZo1YcsPGTIk7L7q6mr/9ebNm8fcSCIispBoBXpmJhBhQk5KIjwGPTXZbMAPfxh9ORboRES6qRboXbp08V//4osv/EV5eXk5XnrppbDTqg0fPjzsOY4cOeK/3r59+0Y3loiILCDah+4WLcxpByUeC/TUpeVYdA5xJyLSTbVAv/TSS/3D1yVJQkFBAQYOHIgLLrgAJSUlQctmZmaG9aB7vV58/vnn/vOhd+/ePT5bQERE5orWg84RU6lDqRjnMeipQUuBzh50IiLdVAv0n/3sZ/7rNpsNbrcbX375JcrKyvz3+wr4G264Iew0bP/973+DjmPv27evke0mIqJEYQ86+bAHPXU1axZ9GRboRES6qRboI0aMwDXXXOOfhd3XE+67+DRr1gy///3vw9b/5z//CQD+9ZWOUSciIgFVVER+nD3oqYOTxKUuDnEnIoqLiCdye/XVVzF48GBIkuQvtH0kSUJ6ejqWLl0adLw6AJw4cQLLly/3F/JOpxMjR440tuUCcXK4n3CcTidGjRrF7ATE7EwQrUCPsQed2QmIp1kTXsz7nZYCPYVPsWsGvmeKi9mJy4zMIr5CdnY2Pv30U7z44ot4/fXXsWPHDtTU1KBt27YYPXo07r33XvTp0ydsvXfeeQfnnXee//ZFF10Udi51IqvL0PLhgyyJ2cVZeXnkx3NyYn5qZicYDnFPCjHtd02bRl/m5En9z0u68D1TXMyO1ETsQQcAh8OBWbNmYd26dSgrK0N9fT2OHj2Kf/7zn4rFOQDccccd2LFjh//yyiuvGN5wkfA8h+Jxu91YuXIlsxMQszPB+vWRH2/dOqanZXYC4hB34cW834WczUfRli2xNYo04XumuJiduMzILGqBTo3H4SvicTqdKCgoYHYCYnZxFjD5p6omTWJ6amYnIA5xF15c97sFC4x/TvLje6a4mJ24zMiMBTqRilpObiMsZhcHkgS89RZw/fXRlx0/PuaXYXaCYQ96Uoh5v9MyAfDcucBXX8X2/BQV3zPFxexIDQt0E3D4injcbjfWrl3L7ATE7GJQXw+0by8PWR0zJvi40U8+AS68UO4pnTwZWLky+vONGBFTM5idgHgMuvAatd/9+c/Rl3nsMaB3b/n95Sc/CZ7DYtUq+X6bDZg/X//rpzi+Z4qL2YnLjMw4roKIKFV88QXwzDNAp07A73/fMNv6eecBJ07I19esAWbMAH7wAyA/H3jwQX0TPZ1/vrZjUyk5cIh7ahs6VN/y//qX/PfRrZs8C/wjjzQ8dv/9wCWXAFddJd/etg3461+Bjh3lx7KyDGs2EZGV8b8oEVEqqKoChg0DzpyRb5eVAQsXAnV1wHffBS/7wQfyJRaDBjWunSQWDnEnvd5+W/2xa68FTp+W57oYMQKorpbvP34cWLLElOYRESUah7gTESUzl0vuOX/22YbiHABefFH+afR5in/1K2Ofj6yNQ9zpnnuMey7fe9R77zUU5wDwyivAt98Ce/ca91pERBbFHnQiomR1/DgwfDjwzTfqy9TVGfd6f/2r/iGvJDalYpxD3FPLffcBJSXA8uXGPefXX4ff1727/POuu+T3GiKiJMUedCKiZLVgQfTivL6+ca/xwx/KM7xLkvzBmcefpxb2oFNODrBsmfwe0NgROb5DZCK9jzz9NHDkSONeh4jIwligE6nguSnFxezOeeihyI/X1DS+QG/evHHrh2B2gmGBnhQM2++aNWvc+l6v/DPaF32RvnhMMXzPFBezIzX8yzBBWlpaoptAOqWlpWHcuHGJbgbFgNkFcDgAj0f98TNnGj/E3cACndkJiJPECc/Q/c7pBJo0Ac6ejW193/tRtAKdn6sA8D1TZMxOXGbUdexBN4HX940wCcPr9eLEiRPMTkDMDsCxY/IES9GK5zNnGt+D3rZt49YPwOwExNOsCc/w/a4xX9rV1so/I32xCMhfABw/bvwkl4Lhe6a4mJ24zMiMBboJuPOJx+v1YufOncxOQCmdnSQBN98sn+c8L08+tVokRhTo7ds3bv0AKZ2dqNiDLjzD97vGfEHjez/yFepqZswAOnQAcnNjPyVkEuB7priYnbhYoCcJHmMiHqfTidGjRzM7AaV0dtu2Af/8p3y9oiL68hYr0FM6O1EpDUVmgS4Uw/e7kydjX9f3fhR4Skglhw/LP6urgd/8JvbXExzfM8XF7MRlRmYs0E3Ab8fE4/V6cejQIWYnoJTMrrgYePxxYPJkfesZcQy6wT3oKZddMuIHTqEYvt+1aBH7uloL9ED79wPPPQc884y+9ZIA3zPFxezExR70JOGJdiwVWY7H40FxcTGzE1DKZffVV8BllwG//738QVWP/fst1YOectklA0kKv4896EIxfL9r0yb2dX2Ty733nr717rxTPs3j+PGxv7aA+J4pLmYnLjMyY4FORCSyF16Ivcj+xS8aX6B36dK49UlsLNAp1KRJsa/rcgHl5fIpIGPxySfAwYOxvz4RkQWwQCciEtmyZY1bv7FD3A2cxZ0EpFSgc4h7arv77sat/69/NW7948cbtz4RUYKxQCciEtHZs0BJifJprvS4447Y173ttsa9NomPPegUqrGHvdxyS+PWr65mkU5EQmOBTkQkmpIS4KKL5OHljZkxubEGD07ca5M1sEAnJYk89GXMGPkUbPfck7g2EBE1Agt0IiLRLFoE7NqV2DY0bQpcd11i20CJxyHupOS++xLdAuCpp3g8OhEJiQW6CWxK54klS7PZbGjbti2zE1BKZPfgg/F9/p/8JPLj06YB//kPkJ1t6MumRHapgD3oQonLfjdrFvDXvwKtW0debvRo415Tydtvx/f5E4zvmeJiduIyIzMW6CYw44T2ZCyn04mhQ4cyOwExu0aaPh149131Iv2224ClS+MyvJ3ZCYhD3IUXl/3ObpdPe3bwIJCVpbzMe+8BRUXGvaYS32nbkhTfM8XF7MRlRmYs0E3AcxyKx+Px4Ouvv2Z2AmJ2jeR2yz8ffxy4+GL5nMbdusnXJ00CHn44bi/N7ATk9YbfxwJdKHHd71q0kM80cfHFwA9+AHTuDDRrBsyYIZ+zvLGTXEaT5L2TfM8UF7MTlxmZ8WsbIhW1tbWJbgLFiNk1wtat8s9evYDNm+XrJn7IZXZJgD1CwonrfldQIF8SQWmER5Lhe6a4mB2p4X9REzjYmyAch8OBgQMHJroZFANm10gzZzZcN7n3idkJiEPchcf9TlzMTlzMTlxm1HUc4m4CDl8Rj8fjwbZt25idgJhdI91wQ8JemtkJSKlAj/ewZTJUwve7l16K33MneQ96wrOjmDE7cZmRGf+LmsCrdIweWZrX68Xhw4eZnYCYXSOcOCGfPzhBmJ2AlAqgJD/uN9kkfL+bMSN+RXqSv5ckPDuKGbMTlxmZsUAnIiL5nOZt2ya6FSSaJO+hJJP87Gfxed66uvg8LxFRHLFAJyJKNddfH35f9+7mt4PExwKdjNC0KZCREX7/pEmNe15OwkVEAmKBTkSUSu6/H+jXL/x+9p5TLFigk1Fatgy/79575VO0xYoFOhEJiAU6EZFIGjM5yYEDwGOPyechDtWuXezPS0TUWEoFeo8e8ukeH3sstudkgU5EAmKBTkQkki+/jH3d9HT5p1KBzh50igV70MkoLVqE39esmTzpoNLwdy1eeQU4e7Zx7SIiMhkLdBPYecoZ4djtdvTs2ZPZCSips/N4gBEjYl8/LU3+qfRht3372J/XIEmdXbLiDMTCs8x+16RJ+H2+9yzfz1j87W+xr2txlsmOdGN24jIjM/5VmMCME9qTsRwOB3r16sXsBJTU2RUXAzU1sa/v+5DbqVP4Yx07xv68Bknq7JJVZmaiW0CNZJn97rzzgm/n5jZcj1Sgd+4c+XnvuSf2NlmcZbIj3ZiduMzIjAW6Cdxud6KbQDq53W5s3LiR2QkoqbOrro6+zL33qj/mG0J66aVAdnbD/eefb4kCPamzS1a//CUQ8GHF++MfJ64tFBPL7HezZgXfHjeu4XqkAn3ChPi0RwCWyY50Y3biMiMzFugm4PAV8djtdnTu3JnZCSips9MyQdyNNyqfUzgjo6GQatECePVVYOBAYORIYMUK+TjPBEvq7JJV27bAq69C6tsXtcOGAX/+c6JbRDpZZr8bPhx47jmgf3/gpz8FHnqo4THf/BmhysqCv2xMMZbJjnRjduIyIzObJHGGl3ipqqpCVlYWKisr0VJpdlIiIj1WrgzuVVKyZw+wdSswdWrw/W3bAidOxK9tRETx8sEH4T3lLVrIo4rmzQMefjjy+vyoS0QGMaO+49c2JuDwFfG43W588sknzE5ASZ1dXV30ZdLTlU9XJMCxwkmdXZJjduISIjulXnLf+5zS5HIpQojsSBGzExeHuCcJDlIQjyRJqK6uZnYCSurstBToTZoAWVnh97dubXx7DJbU2SU5ZicuIbJTKtB9Z6PQUqBbedsaQYjsSBGzE5cZmbFAJyISRWMK9FatDG8OEZEplAp034dktePTA/Fc6EQkEBboRESi0FKgN22qXKA7nca3h4jIDEoF+rffyj+19KDX1xvbHiKiOGKBTkQkigceiL5Ms2byhHCh8vONbw8RkRl8w9kDTZok/9RSoG/YYGx7iIjiiAU6EZEIDh4ETp2KvEyTJvLp0jIygKFDgx+bPTtuTSMiirslS4JvX321/FPLEPf/+z/Dm0NEFC+WL9DfeustzJo1CxdffDHS09Nhs9n8FzUejwcLFizAFVdcgezsbGRkZKBHjx6YPXs2jh07prreN998gxkzZqBr165IT09HmzZtMGbMGLz55pvx2DQiIu02b46+TFpaw/XXXpN7mPr0AdasAXr1il/biIji7aabgCeeAIYNk0+rdvPN8v05OdHX/eabuDaNiMhIlj8P+oABA/Dll18qPqbU9Lq6Olx77bUoLCxUXCcnJwerV6/GxRdfHHT/ypUrMXHiRNSpHON58803Y/HixRG/GAjlO09eeXk5WnGCJqF4vV6UlpaiTZs2sNst/z0WBUja7F58EbjttsjLtGoFlJeb0px4SNrsUgCzE5fw2RUXAwMHRl/O65VHGCUR4bNLYcxOXBUVFcjOzk7t86DbbDZ0794d119/PUaMGBF1+blz5/qLc4fDgZkzZ+LBBx9EXl4eAODUqVOYNGkSTp8+7V+npKQEU6dO9RfnvXv3xiOPPIIpU6b4l3nllVfw/PPPx7QN3PHEY7fb0a5dO2YnoKTNTssEcRUVcW9GPCVtdimA2YlL+Ow6dNC23Jkz8W1HAgifXQpjduIyIzPL/1Vs3LgR+/btw+uvv46RI0dGXLa8vBzPPfec//acOXOwcOFCzJs3D4WFhf7e74MHD2Lp0qX+5Z599llUVlYCADIzM7FhwwY88MADWL58OaZOnepfbv78+fB4PLq3weVy6V6HEsvlcmHFihXMTkBJm13Al4qqLrww/u2Io6TNLgUwO3EJn12bNtqWS8ICXfjsUhizE5cZmVm+QM9QmrlTRWFhYdAQ9YkTJ/qv9+zZE3369PHffv/99xWvjxw5EjkBxzMFPkdJSQm2bt2qvfHnOHl6I+E4nU4MGzaM2QkoabPT8uFS8Ingkja7FMDsxCV8dk4nMHhw9OWSsEAXPrsUxuzEZUZmSfVXsX379qDb5513XtjtHTt2BC1bX1+PPXv2RFwn9DUGq/wjqK+vR33AuTarqqoAyN+0KH3bYrfb4XA4/L3yDocDbrdb8dh63+N2ux1utxt2ux12uz3itzi+PyC32x10XU1aWhq8Xi+8Xi+cTie8Xq/qiAGbzQan0xnUdo/HA6/Xq7i8b1sD265lW10ul6a2By7j245obQ/c1tC2S5IEp9MJl8sFh8PBnCyak1LbPR4Pmpw77U4y5WSvqYEjZD3PvHmwf/wxbJ9+Cu/48fD87GeAwjZYNSdf23w5Be53vhFPouWktK2i70++tkVqu91uR0ZGBtxud9B2aGk7cwpve7xyUtufQvc7pbZbOSfbX/4Cx403AseOwXv//bC/+y5sxcVB60unT8Ot8W/SqjmF8r1n+p7H6jlF2tZk2p+0tN3hcKBp06aK+50Pc0p8TkrbakYPelIV6GVlZUG3Qw/cz8zM9F8vLS0FIA+LDww00jqB6ymZP38+5s2bF3Z/UVERmjVrFnZ/Xl4eBg4ciO3btyMjIwO9evXC5s2bcfLkScXnHzBgAPLz87F+/Xr06dMH7dq1Q2FhoeoOMmrUKGRkZGDlypUoKChAbW0t1q5dq7is0+nEuHHjUFpaip07d2L06NE4cuQIikP+wfm0bdsWQ4cOxd69e1FbW+vfjsOHDysu37NnT//2de7c2b8d1dXVissPGTLEv33Dhg3zb4ca3/Zt2LDBvx2bNm1SXDYzM9O/fSUlJf7tCPyiJhBzEiunL7/8EkePHkVBQQG2bNmSNDn1++ordAtZ7/PBg9Hh5puRn5+PdZ98guqPP1Z8fivmxP0pnMg59e3bFzt27ECLFi3Qt29f5hTASjkp7U9FRUXJkdNf/+pftp3LhSEhr+uuqRE6p0j707Bhw5CZmSlGTiGSbX/S+r43ZswYFBUVqW4nc7JGTkr70xkTRuNYfhb3QA8//HBQARza9Ntvvx0LFy703/Z9Q+Uzbdo0vPbaawCApk2bora2FseOHUOnTp38y8ydOxePPvqo//a+ffvQo0cP/+0nnngCc+bMUWyfUg96bm4ujh07htatW4ctn+hvgELxm7qGtrtcLhQVFWHMmDFIT09nThbNSantdXV1WL16NQoKCmCz2ZImJ8ett8L+z382rDR7Ntx//rOwOSntT4H7Xdq5U8aJlpPStoq8P2l93/N6vVi1ahXGjh2L9PR05qSyrYnOSWl/OnPmTNh+p9R20XJyNm8OW8DfoLR+PdyXXabadqvnpLQ/+d4zr7nmGqSlpQmZU7LtT1rf9yRJwkcffaS43/kwp8TnpLStZWVl6NixY1xncU+qHvTQIri6ujro9Ga+IecA/MeZ5+TkBH2ID/3mKHCdwPWUpKenIz09Pez+tLQ01Z0PQNCXCL4/hEgCl4n0vErLRFve94cbel1NYNt9Q8EjCWy7lm3V0/bAZbS0PXAZtbanpaX572dO6hKdU6CkzSl0FvfMzKTNSek9U5icFCRrToF8H3acTqf/+ZmT8vJWfd+L9FlFyJzatAGOHfPftNXVJUVOSmw2G2w2m5g5nZNs+1MkaWlp/vfMaDUCc1KXqM97WtZtLMtPEqdHv379gm7v379f9bZv2fT0dFxwwQWa1lF6DSIiU4QOqVI4bIaIiM4JnWQ4CSeJI6LklFQFum9onc/bb7/tv75r1y7s3r3bf3vChAn+6+PHj/dfX7duXdCx7G+++ab/eqdOnXDxxRcb3m4ioqhqa4Nvs0AnIlIX+h7JAp2IBGH5Ie4vvPCCvxd748aNQY/dc889/uu///3vkZOTgzvuuANPP/00AODJJ5/EqVOn0KFDByxatMi/bF5eHm688Ub/7dmzZ2PBggWorq5GTU0Nhg8fjilTpmDXrl1BRf6cOXOiDrcgIoqL0A+XOk5BSUSUckLfI0O/5CQisijLF+hvvPEG/vOf/yg+9tRTT/mv33nnncjOzsbjjz+OHTt24OOPP4bH4wmaNA4AWrVqhbfeegstWrTw39elSxe89tprmDRpEurr67F79248+OCDQetNmzYNd955p4FbRkSkAwt0IiLt2INORIJKqiHuAJCRkYFVq1bhhRdewJAhQ9CyZUukp6eje/fuuPPOO7Fz507F85iPHz8excXFmD59OnJzc9GkSRNkZ2dj9OjRWL58OZYuXRp1cgM1WiYuIGtxOp0oKChgdgJK2uxSYIh70maXApiduJI2uxToQU/a7FIAsxOXGZlZ/q9i3bp1utdxOp2YNWsWZs2apWu9Xr16YfHixbpfj5JTbW0tMjMzE90MikFSZpcCBTqQpNmlCGYnrqTMLkV60JMyuxTB7EhN0vWgW1Gk8wSSNbndbmzYsIHZCShps0uBIe5Jm10KYHbiStrsUqAHPWmzSwHMTlxmZGaT1M7qTo1WVVWFrKysuJ7InohSRPPmwUX6//4HXHpp4tpDRGRlt90GvPhiw+077wT+9rfEtYeIkoIZ9R170E3g9XoT3QTSyev14sSJE8xOQEmZXV1deA96En7pl5TZpQhmJ66kza516+Db584IlEySNrsUwOzEZUZmLNBN4PF4Et0E0snj8WDTpk3MTkBJmd1334Xf17mz+e2Is6TMLkUwO3ElbXa9ewffPnQoMe2Io6TNLgUwO3GZkRkLdCIiqwst0Js3BzixDBGRutAvMZW+6CQisiAW6EREVrdmTfDtTp0Amy0xbSEiEkFogV5RAdTUJKQpRER6sEAnIrK66urg2x07JqYdRESiUDoMaPdu89tBRKQTC3QiIqvbty/4NnvPiYgia9EivEh/773EtIWISAcW6EREVubxAJ9+Gnzfz3+emLYQEYnkgguCby9cmJh2EBHpwALdBDb2dgnHZrMhMzOT2Qko6bLbuhUoKwu+b+TIhDQl3pIuuxTC7MSV1Nnl5ATfPnUKSKLTWiV1dkmO2YnLjMxskiRJcX+VFGXGieyJKMm1aAGcPt1wu1cv4KuvEtceIiJRfPghMH588H2vvw5cf31i2kNEwjOjvmMPugnMOKE9Gcvr9eLQoUPMTkBJlV1dXXBxDgBXX52YtpggqbJLMcxOXEmdndL75ZQp5rcjTpI6uyTH7MRlRmYs0E3AnU88Xq8XJSUlzE5ASZVd797h940ZY347TJJU2aUYZieupM7O6QSaNQu/f8MG89sSB0mdXZJjduIyIzMOcY8jDnEnopgdPAh06xZ+P9+yiYi0W78eGDEi/H6+lxJRDDjEPUl4PJ5EN4F08ng8+Prrr5mdgJIiO49HuTi/917z22KipMguRTE7cSV9dsOHK9/fpIm57YiDpM8uiTE7cZmRGQt0E3D4ini8Xi/27NnD7AQkfHaSJA/LVPLEE+a2xWTCZ5fCmJ24UiK7tWvD73O5gDvvNL8tBkqJ7JIUsxMXj0EnIkolkgTYVd6WV68GeDoWIiL91E5N+dxzwOLFpjaFiCgaFuhERFZQV6denP/oR8DYsea2h4gomagNS73lFuC668xtCxFRBCzQiYgSbf16ICND+bEmTYAPPjC3PUREycZuB0pKlB977z15hJLLZW6biIgUsEAnIkoUr1f+UKg0w7BPfb157SEiSmadOgFffaX+eJMmwD//aV57iIgUsEAnIkqEP/wBcDgiL8PTABERGatXL+C779Qfv/lm+YvTo0fNaxMRUQAW6Cawqx1XSpZlt9uRl5fH7ARk+eyWLZM//D3wgPoykyenZHFu+exIFbMTV0pm17EjUF0deZncXPm9uqLClCbFIiWzSxLMTlxmZGaTpBT8FGgSM05kT0SCmDsXeOyx6Mt9/jkwaFD820NERNrOjtG3L/Dxx0DbtvFvDxFZmhn1Hb+2MYEZJ7QnY3k8Hmzbto3ZCchS2Z05A6Snyx8AoxXnDoc8y3AKF+eWyo50YXbiSvnsJAnYuTPyMjt2AO3aye/lH31kmRFOKZ+dwJiduMzIjAU6kYoMtVm1yfISmp0kAY88In+Qa94cOHs2+jqHDwNut/pp1lII9ztxMTtxpXx2P/iB/N49bVr0ZQsK5Pfqe++NfCy7SVI+O4ExO1LDIe5xxCHuRClCkoCVK+Xzleuxdi0wcmRcmkRERDGQJOC884CDB7WvM2uWPEoqJyduzSIia+AQ9yThdrsT3QTSye12Y+PGjcxOQKZl53YDzz0n95Lb7fqK840b5Q+BLM6DcL8TF7MTF7MLYbMBBw7I79HvvadtnX/8A2jdWl73qquAffvi28ZzmJ24mJ24zMiMBboJOEhBPJIk4eTJk8xOQHHN7vvvgb//HRg7FkhLA+68Uz7OXKvSUvlD35AhxrctCXC/ExezExezi+DHP5bfs7dsAaZP17bOxx8DPXrIxfqtt8qjq06fjkvzmJ24mJ24zMiMBToRkZrSUuCVV+Tz4ubmyqfm+dWvgKIi7c/x4IOA1yt/yGvdOn5tJSKi+Lj4YmDxYnlOkZdeArKytK338svAuHFAixZywT5rFvDGG0B9fXzbS0RCcya6AUREliBJwNdfA598Anz6KfDf/wJHjuh/nquvBrp2BZ5+Wp7BnYiIkkNaGjBjhnypqACWLgUWLow+C7zPggXyBQCGDgUuvxy49FL5eseOcWs2EYmFBToRpR5Jko8RXL1anqjtq6+A/fu1zbgeKicHGD8emDhRPg5dyzl1iYhIbK1aySOqfvUr4PhxYMkSYM0a+aLFxo3yxSc3F8jMBEaNAiZPBi66SO55J6KUwwKdiJKbJMnF9xdfAFu3ygX5li2Ne87Bg4ExY+RT8vTsyaKciCiVtW8PzJkjX1wu4N13gRUr5P83R49qew7fiK3du+UJSAHA4Wgo1gcOlH9mZ8dnG4jIMligE1FykCTg0CHYdu3Cee+/D8e//iX3jH/5JVBX17jn7ttXnnH9qqvkIexNmhjRYiIiSjZpacD118sXQJ7L5IMPgPXr5d51rQU7AHg8wPLl8sWnY0egXz+gXz/YevZEq4oKoLZWfl0iSgo8D3oc+c6TV15ejlatWiW6OaSD1+vFkSNHkJubC7udcylaitcr94h//bV82b1bvuzYIX9IaSyHA7jsMvnYwBEj5OGGGRmNf16KivuduJiduJidyU6ckAv1zz8HNm0C/vc/4557xAigf3+gVy95Jvnu3eU5UTjKy3K434mroqIC2dnZcT0POgv0ODLjRPZESUmSgD175A8w+/YBe/fKl337gPJy417HbgcGDZJ7yPv3lz/c9O0r309ERBRvp0/L/9s+/lieoNT3xbNRWrQAeveWL927y8e6d+8OXHAB0LYti3cincyo71igx5EvwLKyMuTk5CS6OaSD2+3G+vXrMXz4cDidPBIkLr7/Xi7ADxyQe8QPHAAOHpSvx+OcsWlpchE+ZIj889JL5Q8sLMYtg/uduJiduJidBVVVyb3rX38tzxC/dq38v9FoWVlyoe47jWjXrg2X/HygTRsW8HHC/U5cp06dQuvWrVmgi4pD3MXl9XpRWlqKNm3acOhRLOrq5AnZDh0CDh+Wj7k7dEi+HDkin54mjtzdu8Pxgx/A1q+f3CN+0UVyjwE/aFga9ztxMTtxMTtB1NQA27fLlx07gB07IO3cCZuRo8pCNWsmF+tt2wKtWzcU7l26AH36yMPo+X81JtzvxMUh7oLjEHdKOr7Tk+3bB3z3HVBS0vDzyBH5Z2mpOW3JyJC/+e/VS+4Rv+gioFs3+QMEJ3EjIqJUUFEhD4n/+mv5/7BviPyuXfIkc/Fmt8sFe6dOQOfODdc7dZKvDxggn5KOKEmYUd9xTIUJXC5XoptAOrlcLhQWFmLs2LFIS/aZUSVJnrTmm2/kc7l+/33Dz2PH5J++ixn/7EO1bSsX3j16yAV59+7yceO9eiku7nK5ULhiRWpkl2RSar9LMsxOXMxOXC6XC4WffipnN3Ro8IP19fIItm+/lc9osnu3/H/+6FG5kD971phGeL3y6xw+HHm5Zs3kYfQdOsgX3/X27eVLx47yiLf0dGPaZXHc78RlRl3HAp1IhdvtTnQTYiNJcjF94IDcm33yZMPPkyfl4jvwulH/pGPVtKk8ZK5bN+C88xpmnR06VP7nHQNhsyNmJzBmJy5mJy7V7NLT5S+2e/QAfvjD4Mc8HrlI/+Yb+XLggPyZ4OhReS6Yw4eN/0L+zBn5OHotx9JnZspFe9u28s82bYKvt2sn/+zVS+izrHC/IzUs0ImsrLZW/vb75Eng1Cl5BvPycrngLitruPhul5Ymppc7kg4d5GFuXbrIhXhenjwhTf/+PH6NiIjIbA5Hw2RwY8eGP+52y4evHTwofwbZtQv44gu5qD961JhTmkZSXS1f9u3TtnyzZvIx8q1by4V7mzZATk7Dfa1by7dzchqG3vO4b7IwFuhE8SRJcuH83XfycWKVlXKBXVEhX8rLGwrviorgIjze/wAbKz1dPt6sY0f5Z+DxZ3l58jD0FBmqRkRElDScTvn/eF4eMHy48jInTshnYikpabh8913D5cQJ89p75ox8OXJE33otWzYU7q1aAdnZ8vXsbPm2776srIbH8vLkkX9EccQCnUiFzeWSZx0/fVounqur5QLb97OyUj4Viu96RYV821d8V1YmdgNi1aZNw/Fg7ds3HCvmu+/CC+Wf7PkmIiJKTe3aAQUFkZfxeORj3w8ckOe0OX48eG6b48flQj4ep1bVoqpKvhw8qH/dJk0aivisLLnYz8pquATebtky+NKmDSfOo4hYoFPyqK2V3+irq+XTkdTUyNdPn24YLuV7rLpaflP2Pe4rvM89nlZXhwmJ3h6jZGXJx26FXtq1ky9t28pDzi+4QB72RkRERNRYDoc88VvfvtGXramRh9L7CvfS0oafvnlzfJdEz50DyG04cSLmkQJpAK4FILVoIR9z77u0bAn47gu8HvrTd715c7nYb9uWn+GSCAt0MockyTOKnj7dMBQp2vWaGvl64KWiouG6r7g+fVo+XirZ2WzycVTZ2crHV/mOvWrdWu7hPv98eZgaERERkZW1aAFceqn25Ssrgb175QLedwmcm+fUqeDrNTXxa3sj2HwdSseOGfOETZvKRXuLFg0FvO9n4KVFC/nY/dD7srKU1+dM86biedDjyHeevIqKCmRlZSW6OeF8RXNdndz7XFsrX/fdV1/fcAksnPUU2YHX+acmT0qSnR18fJPvGCfffb7joXy3c3Plnm4OKddEkiRUV1cjMzMTNv7OhMLsxMXsxMXsxMXsdHK75eHsx483zPcTOA+Q7z7foYq++yxa3JuqSRP5kpYWXvD7bqelycuEfhng+yIgLU3uOMrIkC/NmjVc912aNpV/WriDqbKyEq1ateJ50JOWJMlDZEIL4rq64EI59HrgbV9RrXQJfMx3PfQni2bt0tIajh/yHVeUmal8zJGv8G7ZUi60O3eW7ydTZAh82pVUx+zExezExezExex0cDrl0YXnn69/Xa9X7uU+caJhniHfxL+++Yh88xD5DqMMnK+outrorTHX2bMNhxaUl8f/9ZzOhmLdV8z7Lr7bTZvKnVdKBX+zZvJz+J6naVN54uLQ64E/A687nQntGGOBbobBg+WJMgJ7pH0Xih+breGbvcDjdVq0kAvnwNutWjUM92nZEu7mzbFh+3Zccc01SMvPF/o8m6nG7XZj5cqVKCgoQBqHZAmF2YmL2YmL2YmL2ZnIbpc7Wzp3jv05JEnusT9+HO6KCny2Zg0uvfBCOGtr5SK+pkYu6APnUfLdH3hfTY3cyZbM3O6GbU4Euz28eD93kUzo3ecQ9zjyDXGvBBCfARCCS0tr+DbMNwQm8Lra8Bmgobhu1qyhyPYt07atXIA3giRJcLvdcDqdHDYmGGYnLmYnLmYnLmYnLmYnLkOy83jkSfPU5mfyFbiBh6gGzu8UON9TXZ3cseW7zwoT8VlUFYAsgEPcyWRpaWHfFikW0I29bvFve2tra5GZmZnoZlAMmJ24mJ24mJ24mJ24mJ24Gp2dwyGfCrdDB+Ma5eNyhRf59fXB9wdO4uwr6n2P+74QCLx+9qzcM+6b98p38XiMb7/gWKBbldrxERkZ4cdQ+CZV8B2r4bseel/ocqETMviu2+2J3vqEc7vdWLt2LYeNCYjZiYvZiYvZiYvZiYvZicvy2aWlNcynFG8uV/Bk1UrXfRNPh14HGu4L/FlbKz+v7xBjtfm9XK74b18MWKCbwL1woTzsOrRXWm2ygiZNOGM3ERERERElt7S0homYzRY4R1hg4R54CbnPXVYG/PrXcW0WC3QTSNddJ5+bmoiIiIiIiBLP4Wg49FYjyYQCnWOZiYiIiIiIiCyABbqCb775BjNmzEDXrl2Rnp6ONm3aYMyYMXjzzTcT3TQiIiIiIiJKUhziHmLlypWYOHEi6gLOL1hWVoY1a9ZgzZo1WLlyJRYvXszTWRAREREREZGh2IMeoKSkBFOnTvUX571798YjjzyCKVOm+Jd55ZVX8PzzzyeqiWQip5PfX4mK2YmL2YmL2YmL2YmL2YmL2ZEamyRJUqIbYRVz5szBn/70JwBAZmYmDh48iJycHADAz372MyxbtgwA0LlzZxw6dAgOhyPi81VVVSErKyuuJ7InIiIiIiKi+DOjvmMPeoD333/ff33kyJH+4hwAJk6c6L9eUlKCrVu3an5er9drTAPJNF6vFydOnGB2AmJ24mJ24mJ24mJ24mJ24mJ24jIjMxbo59TX12PPnj3+2+edd17Q46G3t2/frvm5ufOJx+v1YufOncxOQMxOXMxOXMxOXMxOXMxOXMxOXGZkxoMfzikvL0fgaP/QIQuZmZlBt0tLS8Oeo76+HvX19f7bVVVVAABJkuByucKWt9vtcDgc8Hg8AACHwwG32w21ow4cDgfsdjvcbjfsdjvsdrvi8/r4jm1xu91B19WkpaXB6/XC6/XC6XTC6/X62xbKZrPB6XQGtd3j8aj+0fq2NbDtWrbV5XJpanvgMr7tiNb2wG1VavuwYcMgSRI8Hg9zsnBOoW232WwYMWIEc1LYVivlpLY/+fY7XxbMyZo5KbV99OjRcLvd8Hq9zEllW62QU+j+JElS2H6n1HbmFN52M3NS25+GDRsGh8MBSZKYk0rbrZBTaNudTidGjRoFt9utug5zskZOodtqxtHhLNDPCf1lR7utNIv7/PnzMW/evLD7CwsL0axZs7D78/LyMHDgQGzfvh0ZGRno1asXNm/ejJMnTyq2ccCAAcjPz8f69evRp08ftGvXDoWFhao7yKhRo5CRkYGVK1eioKAAtbW1WLt2reKyTqcT48aNQ2lpKXbu3InRo0fjyJEjKC4uVly+bdu2GDp0KPbu3Yva2lr/dhw+fFhx+Z49e/q3r3Pnzv7tqK6uVlx+yJAh/u0bNmyYfzvU+LZvw4YN/u3YtGmT4rKZmZn+7SspKfFvR+AIikDMSbyc6uvrMXjwYOZ0jlVz4v4UTOSc+vXrB7vdjn379qFv377MKYCVcuL+lJw5jRw5Es2aNWNOIayWU+D+dPXVV+PAgQOqbWFO1shJaX86c+aM6nYbhZPEnVNfX4+MjAx/IT579mw8/fTT/se/+OILDBo0yH974cKFmDlzZthzhPag5+bm4tixY2jdunXYayb6G6BQ/Kauoe0ulwtFRUUYM2YM0tPTmZNFc1Jqe11dHVavXo2CggLYbDbmBGvmpLQ/Be53aWlpQW1nTpG3NdE9FF6vF6tWrcLYsWORnp7OnFS2NdE5Ke1PZ86cCdvvlNrOnMLbnugeP9975jXXXIO0tDTmpNL2ROek1HZJkvDRRx8p7nc+zCnxOSlta1lZGTp27BjXSeLYg35Oeno6LrjgAv+3Nfv37w96PPR2v379FJ8jPT097P60tDTVnQ9A0Gzwvj+ESAKXifS8SstEW973hxt6XU1g2x0OR9SZ7QPbrmVb9bQ9cBktbQ9cRq3taWlp/vuZk7pE5xSIOakTJSel90zmFH35RO5Pvg87TqfT//zMSXl5q77vRfqswpyUWeX/k81mg81mY04qrJJT4DK+98xoNQJzUpeoz3ta1m0sThIXYPz48f7r69atQ1lZmf/2m2++6b/eqVMnXHzxxaa2jYiIiIiIiJIbC/QAs2fP9k8GV1NTg+HDh+PRRx/FlClT8Pbbb/uXmzNnTtRvdYiIiIiIiIj04BD3AF26dMFrr72GSZMmob6+Hrt378aDDz4YtMy0adNw5513JqiFRERERERElKzYgx5i/PjxKC4uxvTp05Gbm4smTZogOzsbo0ePxvLly7F06dKox1AQERERERER6cUedAW9evXC4sWLDXs+pVOykbXZbDa0bduW2QmI2YmL2YmL2YmL2YmL2YmL2YnLjMx4mrU4qqqqQlZWVlyn4SciIiIiIqL4M6O+41htE6id94+sy+Px4Ouvv2Z2AmJ24mJ24mJ24mJ24mJ24mJ24jIjMxboRCpqa2sT3QSKEbMTF7MTF7MTF7MTF7MTF7MjNRziHkcc4k5ERERERJQcOMQ9SXD4ing8Hg+2bdvG7ATE7MTF7MTF7MTF7MTF7MTF7MTFIe5Jwuv1JroJpJPX68Xhw4eZnYCYnbiYnbiYnbiYnbiYnbiYnbjMyIwFOhEREREREZEFsEAnIiIiIiIisgAW6EREREREREQWwAKdiIiIiIiIyAKciW5AMvOdwa66uhppaWkJbg3p4XK5cObMGVRVVTE7wTA7cTE7cTE7cTE7cTE7cTE7cVVXVwNoqPPigQV6HJWVlQEAunXrluCWEBERERERkRHKysqQlZUVl+dmgR5HOTk5AIDDhw/HLUCKj6qqKuTm5uLIkSNo2bJloptDOjA7cTE7cTE7cTE7cTE7cTE7cVVWViIvL89f58UDC/Q4stvlQ/yzsrK48wmqZcuWzE5QzE5czE5czE5czE5czE5czE5cvjovLs8dt2cmIiIiIiIiIs1YoBMRERERERFZAAv0OEpPT8dDDz2E9PT0RDeFdGJ24mJ24mJ24mJ24mJ24mJ24mJ24jIjO5sUzzniiYiIiIiIiEgT9qATERERERERWQALdCIiIiIiIiILYIFOREREREREZAEs0HU6ffo0li1bhttuuw2DBg1Cp06d0KRJE7Rq1QpDhw7F008/jbNnz6quX1RUhAkTJqB9+/ZIT09H586dMWXKFHz++eeq61RUVGDu3Lno06cPmjdvjpYtW2LQoEH405/+hLq6unhsZtL67LPP8Nvf/hajRo1CVlYWbDab/7Ju3TrFddatWxe0nNLl/PPPV1yX2Rknlux8uN9Z08iRI6PuW6+++qriurFkSsb75ptvMGPGDHTt2hXp6elo06YNxowZgzfffDPRTUt50fYtm82Go0ePBq3j8XiwYMECXHHFFcjOzkZGRgZ69OiB2bNn49ixYwnakuT01ltvYdasWbj44ouRnp4elIuaWPPhfmosvdk9/PDDUffFW2+9VXFdZmeckpISPP/885g8eTL69OmDNm3aoEmTJmjfvj0KCgrw3nvvKa6XkP1OIl02bdokAYh4ueSSS6SqqqqwdR944AHVdex2u/Tiiy+GrfPtt99K+fn5qusNHDhQKi0tNWPTk8Ls2bNVf5dr165VXGft2rVRM+/evXvYeszOWLFkJ0nc76xsxIgRUfetpUuXhq0XS6ZkvBUrVkhNmzZVzeLmm2+WvF5vopuZsqLtWwCkI0eO+Jevra2Vxo4dq7psTk6OtGXLlgRuUXLp37+/6u9aSaz5cD81nt7sHnrooaj74owZM8LWY3bGmj9/ftQcbr/99qB1ErXfOUExyczMxDXXXIM+ffqgrKwMS5cuxalTpwAAW7ZswR//+Ef84Q9/8C//4Ycf4tFHH/Xfvvrqq/H/7d17UFTlGwfwL4GAgsKugKKieVdIQBSTEiERDG95BXQsMc28TV5wdAQdtRqsLAecGi/NeC1MSU3xNpQDeAnBtMTACxqpQBAgeAEkhPf3h8P5cTgswrqwC34/M8zs+573PXt2Hx93nz23YcOG4fjx40hMTERlZSXmz58Pd3d3uLi4AAAqKysRFBSEO3fuAADUajXmzp2LJ0+eYNu2bSgtLcXvv/+OefPmITo6uglfffPWoUMHDBo0CNbW1oiKimrQ3MGDByMwMFDRr1KpZG3GrnE0NHbMu+YjNDRUkUcAMGjQIFlbm5iS7mVlZWH69OnS0SSOjo4ICgpCWloafvjhBwDA7t274e7ujoULF+pzU196KpUKoaGhtS6ztraWHq9evRqxsbEAAGNjY7z//vuwt7fHrl27cPfuXdy/fx9Tp07Fn3/+CQsLi6bY9BbNyMgIPXv2xODBg5GTk4OEhIQ6x2sTH+Zp42ho7KoLDAzE4MGDFf3Ozs6yNmPXeLp06YLRo0eja9euuHHjBvbt24enT58CALZt24YpU6Zg5MiRAPSYdzr/eaKFS0lJEZ9++ql48OCBrD89PV32S4mbm5ts+ZAhQ6Rlb775ptRfVlYmunfvLi0LDAyUlp04cUL2a0tsbKy0bPv27bJl165da6RX3LKUlJRIj2vuGa/PHvSZM2fW63kYO93TJnbMO8NWfQ96RkZGveZoE1PSvRUrVkjvddu2bUVBQYG0bPr06dKyzp07i6dPn+pxS19eVTHo1q3bc8fev39f9h0mNDRUWnb9+nVhZGQkLduyZUsjbvXLo/pnWs09rDVpGx/maeNoSOxqjtm5c2e9noOx072oqCgRFRWleL/27t0ri+GyZcuEEPrNO56D3kADBgxAWFgY2rVrJ+vv1asXnJycpHb189Bzc3ORnJwstSdNmiQ9NjU1xdixY6X2sWPHUFlZCQA4evSo1N+uXTvp1xwAmDx5suz5q48lzVq3bv1C82NiYqRzVjp27Ijx48fj1KlTinGMne41NHbMu+blrbfegrm5OSwtLeHi4oKwsDAUFBTIxmgbU9K96v/2vb29oVarpXb1PMnKysKlS5eadNtILicnBw4ODmjVqhVUKhU8PT2xZcsWaY8RAMTGxsqurVE9hn379sVrr70mtfn/nm405DNN2/gwTxvHi3yXXL16NSwtLWFubo4ePXpg9uzZSEtLU4xj7HRv2rRpmDZtGoyNjWX9EyZMkLWrajh95h0LdB0pKyuTDokFAHd3d+lxSkqKbGyPHj00touLi/HXX38p5nXv3l128Qm1Wg0rKyuNz0GN4/79+ygoKEB5eTlyc3MRExMDf39/rFixQjaOsdM/5l3z8vfff6OsrAzFxcVISUlBeHg4nJ2dkZ6eLo3RNqakW2VlZbhx44bUrisOAPNE38rKypCZmYmnT5+iqKgI586dw4IFC+Dj44PS0lIADcstxrPpaRMf5qlhysrKQnFxMcrKypCRkYEdO3bAzc0Nhw4dksYwdk2r+nsN/L+G02fevbTnoN+6dUv26/HzdO3aFW3atNG4PCQkBPn5+QAAc3NzLF++XFpWcy9Qzb3vbdu2lbXz8/PRq1cv2byac6rmPXjwQJrzstB17OrD2NgYw4cPx4ABA2BjY4O0tDRER0ejoqICALBx40Z4e3tj9OjRAMDYadCUsWPeNY0XjWmnTp3g4+OD7t27o6SkBEePHsXNmzcBANnZ2ZgxYwaSkpIAaB9T0q3CwkIIIaR2feJA+uHs7IyhQ4eiS5cuyMnJQVRUFIqKigAAZ86cwdq1a/HFF180KLcYz6anTXyYp4bF0tISvr6+6N27N8zMzHD27FnpDjRlZWWYOXMmhg0bBjs7O8auCRUXF2PBggVSu0+fPggICACg37x7aQv0oUOHKt74usTFxcHb21vRX1FRgYULF2Lbtm0AABMTE3z//fdwdHSUxlQPVH3aVXvsqvfXHFOzr67bcrQ0uopdfTk7OyM7Oxt2dnay/uDgYPj7+0tx2Llzp1SgM3a1a8rYMe+axovEdPv27ejdu7fsfQwPD4evr6900Z3k5GSkpqbCyclJ65iSbjEOzcO1a9fQr18/WV9YWBhcXV2Rl5cHANi1axc+//zzBsWU8Wx62sSHeWo4Zs2ahZUrVyoOjQ8LC0N4eDgA4PHjx4iOjsbChQsZuyaSl5eH8ePHS6fOdejQATExMTA3Nweg37zjIe4v4PHjxxg3bpxUnJuZmWH//v2y8yIBoH379rL2o0ePZO2HDx/K2lXnKlSfV3NOzXnVz28g3VKr1YriHABGjRqFvn37Su3q5xAxdvrHvDN8ffr0UXw4tWrVCvPnz5f1VeWWtjEl3VKr1bK4MQ6GqWZxDjw7YqX6OZB5eXnIz89vUG4xnk1Pm/gwTw1Ht27daj1v/aOPPpK1qz7rGLvGl56eDg8PD1y4cAEA4ODggPj4ePTp00cao8+8e2kL9Pz8fAgh6v1Xcy/eP//8Ay8vL5w8eRLAszf4559/VhTngPLWCbdv39bYtrCwQM+ePRXzMjIyZL+65OXlyYJe8zlasheNnS5Vj8krr/w/nRi72jVl7Jh3TaMxYlrzF+aq3NI2pqRbZmZmsi8xdcUBYJ4YmtryqyG5xXg2PW3iwzxtfqo+6xi7xnX+/Hl4eHhI76OrqysSExMVP2rqM+9e2gL9RaSmpmLo0KG4fPkygGdXcE9MTISnp2et4zt27Ci75+HBgwelx0+ePEFMTIzUHjNmjJSg48aNk/ofPnwo3YcPAA4cOCB7jupjSbdWr16Nq1evKvpjY2Olc2UByK7myNjpH/POsJ09exbffPON7AqpAFBeXo6tW7fK+qpyS9uYku5V/7cfHx8vO82hep506tSp1nv+UuP69ttvcfz4cUUxnp2dLbsYlb29PdRqNfz8/GBmZib1//jjj9Lj1NRU2RFi48ePb8Qtp9poGx/mqf49evQIISEhyM3NVSzbvHmzrK3peyRjpzvR0dEYOXKk9H6OHj0aZ8+eRefOnRVj9Zl3RqK2kyxJo9u3b2PQoEHSRaJMTEwQEhICGxsbxdjqF4o7cuSI7DL+b7/9NoYNG4aYmBjpAkjGxsZITk6Gm5sbAKCyshJDhgyRLsGvVqvx4YcforS0FFu3bpW+2E6cOFH2gUuaxcbGSgXXvXv3ZIkSEBAABwcHAEBQUJCUNK6urrhy5Qpef/11eHp6wsrKSrpIXPWLYyUkJGD48OEAGLvGoE3smHeG66effsLEiROhUqng7++Pfv364dGjRzhy5Ijsh68RI0bg9OnTUlubmJLuZWZmwtHRUTqixNHREUFBQUhNTcX+/fulcZGRkYrDOKnxLVmyBJGRkejRowf8/Pzg4OCArKws7Nu3D4WFhdK4jz/+GGvWrAEALF26FBEREQCe5dDs2bPRsWNH7NixA5mZmQCeXeQxNTUVlpaWTf6aWpotW7ZIe9N+/fVXJCYmSstCQkKkx2FhYVCpVFrFh3naOBoSOyMjI6hUKpiamsLHx0f6flL9InHAs8Op09PToVKpADB2jSE6OhqBgYHSD5d2dnZYtmyZ4rZrDg4OCAwMBKDd/4s6iV2td0cnjeLi4mQ3s6/rr6bQ0FCNY42MjMTWrVsVc9LT04WDg4PGeS4uLiIvL68pXnqLsHbt2nrFbufOndIcFxeXOscaGxuLTZs2KZ6LsdMtbWInBPPOUB0+fPi5sXRychLZ2dmKudrElHTv6NGjwszMTGMsZsyYISoqKvS9mS+lxYsXPze/AgICRHl5uTSnpKRE+Pj4aBxvbW0tkpKS9PiqWhYvL696faZlZGQIIbSPD/NU9xoSu8LCwueOs7a2FgkJCYrnYex0q77fI728vKQ5+so7FugN9CIFuhBCnDp1SowZM0bY2NiIVq1aCXt7exEQEFDnh979+/fFqlWrRP/+/UXr1q2FhYWFGDhwoNiwYYMoKSlprJfaImlT5KWlpYkNGzYIb29v8eqrr4rWrVsLMzMz0bNnTzFr1ixx6dIljc/H2OmOtgW6EMw7Q1RcXCwOHjwogoODxYABA4Stra0wMTERKpVKeHp6ioiICFFaWqpxvjYxJd27du2aCA4OFg4ODsLU1FSoVCoxYsQIsW/fPn1v2kstJydHbN++XbzzzjuiT58+wsrKSsqTcePGiUOHDtU6r7y8XGzZskV4eHiIdu3aSZ91ixYtEpmZmU38Klq2hhboQmgfH+apbjUkdpWVlSI+Pl6EhIQId3d30blzZ2FqaiosLCyEi4uLWLlypcjKytL4XIyd7mhToAuhn7zjIe5EREREREREBoBX0CEiIiIiIiIyACzQiYiIiIiIiAwAC3QiIiIiIiIiA8ACnYiIiIiIiMgAsEAnIiIiIiIiMgAs0ImIiIiIiIgMAAt0IiIiIiIiIgPAAp2IiIiIiIjIALBAJyIiIiIiIjIALNCJiIiIiIiIDAALdCIiomZu3bp1MDIyavDfkiVL9L3pREREVA0LdCIiIiIiIiIDwAKdiIiIiIiIyACY6HsDiIiISPc6d+6MKVOm1DnGy8uribaGiIiI6oMFOhERUQvUq1cvRERE6HsziIiIqAF4iDsREdFLrraLzO3atQsAEBUVBV9fX3To0AHGxsbw9vaudR0XLlzAokWL4OrqChsbG5iamsLOzg5vvPEG1q9fj9zc3HptS2JiIgICAmBvbw9zc3N069YNwcHBSElJAQAEBwcrtjU+Pl4H7wIREZH+cQ86ERERKTx9+hSTJk3C4cOH6xyXn5+PWbNm4dixY4pleXl5yMvLQ2JiIjZu3IiIiAjMmTNH47o+++wzhIWFobKyUuq7e/cudu/ejaioKHz99dfavyAiIqJmgAU6ERERKaxfvx6ZmZl1jsnPz4eHhwdu3br13PUVFxfjgw8+wKNHj7B06VLF8j179mDVqlUa55eXl2PevHno2rXr8zeeiIiomWKBTkRE1ALdunXrufc537BhA1q3bl3rsqri3NbWFr6+vrCwsMDNmzdhbGwsjQkODlYU5xYWFvDz84OdnR1u3LihOPx8xYoV8PLygpubm9RXVFSExYsXK7ahTZs2GDNmDNRqNRISEnD9+nXcuXOnztdERETUnLFAJyIiaoGysrIQGRlZ55h169ZpLNABYNy4cYiKioKlpaXU9/jxYwBAUlISjh8/Lhvv4uKCX375BTY2NlLf4cOHMXnyZAghADw7dP6TTz6RHTq/Z88eFBUVydalVqtx/vx59OvXDwBQUVGB4OBgfPfdd3W+JiIiouaMF4kjIiIiBZVKhT179siKcwBS++DBg4o5mzZtkhXnADBx4kS4u7vL+k6cOIGSkhKpferUKcW6li9fLhXnAGBsbIzNmzfDzMys4S+GiIiomWCBTkRERAoTJkyAtbW1xuVJSUmKPh8fH8UV1o2MjJCcnCwb999//+Hy5ctS+8qVK4p1jRo1StGnUqkwZMiQBrwKIiKi5oUFOhERUQvk5eUFIUSdf3UV4M7OznWuPy8v74W2r/pt1woKChTLu3TpUus8Tf1EREQtAQt0IiIiUrCysmrU9Vedy66JkZFRrf1V57ITERG1RLxIHBERESloKpCr2NnZ4dq1a7K+OXPmwMLCol7r79+/v/S4ffv2yM7Oli2/d+8ebG1tFfOysrLqtX4iIqLmiAU6ERERNZi7uzsSEhJkfX5+fpg6depz51ZUVMhu1+bq6qoo0GNjY2W3YgOe3Y6t5vnsRERELQkPcSciIqIGmzRpkqJv0aJF+O2332odX15ejri4OMydOxcTJkyQLfP391eM//LLL3Hz5k2pXVlZiSVLlqCsrOzFNpyIiMiAcQ86ERERNZiHhwf8/f1x8uRJqe/ff/+Fu7s73N3d0bdvX1hZWeHBgwe4ffs2rl69Kp137uXlJVvXu+++izVr1sjuhV5QUICBAwdi7NixUKlUOHPmjOKQeiIiopaGBToRERFpZffu3fDw8MDt27dl/RcvXsTFixfrvR4rKytERkZi5syZsv6SkhIcOHBAapuYmKBHjx6yPetEREQtCQ9xJyIiIq3Y2triwoULikPW69KmTRt4enoq+t977z2Eh4drvDidmZkZduzYAQ8PD203l4iIyOBxDzoRERFpzcbGBocPH8Yff/yBvXv34vz588jIyEBRURFeeeUVWFtbo2fPnnBxcYGPjw/8/PxgaWlZ67pWrVoFb29vfPXVVzh37hwKCwvRsWNH+Pj4ICQkBE5OTjh9+nQTv0IiIqKmYyR4Q1EiIiJqJoKDg7F7925ZX1xcHLy9vfWzQURERDrEQ9yJiIiIiIiIDAALdCIiIiIiIiIDwAKdiIiIiIiIyACwQCciIiIiIiIyACzQiYiIiIiIiAwAr+JOREREREREZAC4B52IiIiIiIjIALBAJyIiIiIiIjIALNCJiIiIiIiIDMD/ALpgHhMz1hvxAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot.Plotting_SpanSelector(freq, np.abs(spectrum), \"Freq\", \"Spectrum\", \"red\")" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 4 }