{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# PyOR Quantum\n", "## Author: Vineeth Thalakottoor\n", "## Introduction to powder average CSA" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Define the source path\n", "SourcePath = '/media/HD2/Vineeth/PostDoc_Simulations/Github/PyOR_V1/PyOR_Combined/Source_Doc'\n", "\n", "# Add source path\n", "import sys\n", "sys.path.append(SourcePath)\n", "%matplotlib ipympl\n", "from joblib import Parallel, delayed\n", "\n", "# Import PyOR package\n", "from PyOR_QuantumSystem import QuantumSystem as QunS\n", "from PyOR_Hamiltonian import Hamiltonian\n", "from PyOR_QuantumLibrary import QuantumLibrary\n", "import PyOR_SphericalTensors as ST\n", "import PyOR_Rotation as Rot\n", "QLib = QuantumLibrary()\n", "from PyOR_DensityMatrix import DensityMatrix\n", "from PyOR_HardPulse import HardPulse\n", "from PyOR_Basis import Basis\n", "from PyOR_Evolution import Evolutions\n", "from PyOR_Plotting import Plotting\n", "import PyOR_SignalProcessing as Spro\n", "import PyOR_CrystalOrientation as CO\n", "import time\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Define the spin system\n", "Spin_list = {\"A\" : \"H1\"}\n", "QS = QunS(Spin_list,PrintDefault=False)\n", "\n", "# initialize the system\n", "QS.Initialize()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Set parameters" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rotating frame frequencies: {'A': -628541601.39}\n", "Offset frequencies: {'A': 0.0}\n", "Initial spin temperatures: {'A': 300.0}\n", "Final spin temperatures: {'A': 300.0}\n", "Radiation damping gain: {'A': 0}\n", "Radiation damping phase: {'A': 0}\n", "\n", "Rprocess = Phenomenological\n", "RelaxParDipole_tau = 0.0\n", "DipolePairs = []\n", "RelaxParDipole_bIS = []\n" ] } ], "source": [ "# Master Equation\n", "QS.PropagationSpace = \"Hilbert\"\n", "QS.MasterEquation = \"Redfield\"\n", "\n", "# B0 Field in Tesla, Static Magnetic field (B0) along Z\n", "QS.B0 = QS.L100\n", "\n", "# Offset Frequency in rotating frame (Hz)\n", "QS.OFFSET[\"A\"] = 0.0\n", "\n", "# Define initial and final Spin Temperature\n", "QS.I_spintemp[\"A\"] = 300.0\n", "QS.F_spintemp[\"A\"] = 300.0\n", "\n", "# Relaxation Process\n", "QS.Rprocess = \"Phenomenological\"\n", "QS.R1 = 1\n", "QS.R2 = 2\n", "\n", "QS.Update()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Zeeman Hamiltonians" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Larmor Frequency in MHz: [-100.0355028]\n" ] } ], "source": [ "# generate Larmor Frequencies\n", "QS.print_Larmor = True\n", "Ham = Hamiltonian(QS)\n", "\n", "# Lab Frame Hamiltonian\n", "Hz_lab = Ham.Zeeman()\n", "\n", "# Rotating Frame Hamiltonian\n", "Hz = Ham.Zeeman_RotFrame()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Dipole tensor PAF" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle \\left[\\begin{matrix}12.5 & 0 & 0\\\\0 & 7.5 & 0\\\\0 & 0 & -5.0\\end{matrix}\\right]$" ], "text/plain": [ "Matrix([\n", "[12.5, 0, 0],\n", "[ 0, 7.5, 0],\n", "[ 0, 0, -5.0]])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "delta_iso = 5.0 # Hz\n", "delta_aniso = -10.0 # Hz\n", "\n", "IT_PAF = Ham.InteractionTensor_PAF_CSA(Iso=delta_iso,Aniso=delta_aniso,Asymmetry=0.5)\n", "IT_PAF.Inverse2PI().matrix" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'Isotropic': 4.999999999999999,\n", " 'Anisotropy': -10.0,\n", " 'Asymmetry': 0.4999999999999999}" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "PAF_Decom = Ham.InteractionTensor_PAF_Decomposition(IT_PAF)\n", "PAF_Decom" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Density Matrix" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Trace of density matrix = 1.0\n" ] } ], "source": [ "#-------------------------- \n", "# Initialize Density Matrix\n", "#--------------------------\n", "DM = DensityMatrix(QS,Ham)\n", "\n", "# High Temperature\n", "HT_approx = False\n", "\n", "# Initial Density Matrix\n", "rho_in = QS.Ax\n", "\n", "# Equlibrium Density Matrix\n", "rhoeq = DM.EquilibriumDensityMatrix(QS.Fspintemp,HT_approx)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Evolution" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rotating frame frequencies: {'A': -628541601.39}\n", "Offset frequencies: {'A': 0.0}\n", "Initial spin temperatures: {'A': 300.0}\n", "Final spin temperatures: {'A': 300.0}\n", "Radiation damping gain: {'A': 0}\n", "Radiation damping phase: {'A': 0}\n", "\n", "Rprocess = Phenomenological\n", "RelaxParDipole_tau = 0.0\n", "DipolePairs = []\n", "RelaxParDipole_bIS = []\n", "Larmor Frequency in MHz: [-100.0355028]\n", "Total time = 132.37 seconds\n" ] } ], "source": [ "QS.AcqDT = 0.0001\n", "QS.AcqAQ = 5.0\n", "QS.Update()\n", "\n", "QS.PropagationMethod = \"Unitary Propagator\"\n", "\n", "EVol = Evolutions(QS,Ham)\n", "EVol.Update()\n", "\n", "A = \"A\"\n", "B = \"\"\n", "\n", "# Generate 1000 random angles\n", "if False:\n", " N = 1000\n", " beta = np.linspace(0, 180, N) \n", " alpha = np.linspace(0, 360, N) \n", " gamma = np.zeros(N)\n", "else:\n", " alpha, beta, gamma, weight = CO.Load_Crystallite_CSV(\"rep2000_cryst.csv\")\n", "\n", "rhoI = rho_in\n", "\n", "start_time = time.time()\n", "freq, spectrum = Ham.PowderSpectrum(EVol,rhoI, rhoeq, A, IT_PAF, B, \"spin-field\", \"secular + pseudosecular\", gamma, beta, alpha, weighted=True, weight = weight, SecularEquation=\"spherical\")\n", "end_time = time.time()\n", "print(\"Total time = %.2f seconds\" % (end_time - start_time)) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plotting" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "plot = Plotting(QS)\n", "plot.PlotFigureSize = (10,5)\n", "plot.PlotFontSize = 20\n", "plot.PlotXlimt = (-50,50)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(
,\n", " )" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d1644a437b264f8c93c224b53368ce58", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAH0CAYAAACuKActAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSVElEQVR4nO3deZxT5dn/8W+WYRhgZmDYlwEEWUREQEBBBcSCBQpudaMu1N3q86PWWp+2al1qaZ+2PurT1qWtitSlLnUFZFxAqaAoyl4QkHVEYFhmBhiGbL8/jsnkZJmZMElOcvJ5v155kXPOneQ6c66EXLnvcx9HIBAICAAAAAAAWMppdQAAAAAAAIACHQAAAACAjOC2OgA78/v9+vrrr1VYWCiHw2F1OAAAAACADBEIBFRdXa0uXbrI6TT6zinQU+jrr79WaWmp1WEAAAAAADLU9u3b1a1bN0kU6ClVWFgoyfiDFxUVWRyNvXk8HpWVlWnChAnKy8uzOhygychp2BF5Dbshp2FH5HX6VFVVqbS0NFQ3ShToKRUc1l5UVESBnmIej0ctWrRQUVERHySwBXIadkRew27IadgReZ1+4adDM0kcAAAAAAAZgAIdAAAAAIAMQIEOAAAAAEAGoECHLTidTvXr1y90eQIg25HTsCPyGnZDTsOOyGtrOQKBQMDqIOyqqqpKxcXFqqysZJI4AAAAAEBIrHqRn0VgC16vV4sXL5bX67U6FCApyGnYEXkNuyGnYUfktbUo0GELTqdTXbt2ZSgObIOchh2R17Abchp2RF5biyHuKcQQdwAAAABALAxxh215vV69//77DMWBbZDTsCPyGnZDTsOOyGtrUaDDFgKBgKqrq8WAENgFOQ07Iq9hN+Q07Ii8thYFOgAAAAAAGYACHQAAAACADECBDgAAAABABqBABwAAAAAgA1CgAwAApFsgIL37rrRggXEfAABRoMMmXC6XRo4cKZfLZXUoQFKQ07Aj8jrM1VdL48dL48ZJt9xidTQ4RuQ07Ii8tpYjwPz5KRPrwvMAACDH7doldepkXldZKfFdAQBySqx6kR502ILH49GcOXPk8XisDgVICnIadkRef2vlyuh1GzemPw40GTkNOyKvrUWBDltwu90688wz5Xa7rQ4FSApyGnZEXn9r69bodVu2pD0MNB05DTsir61FgQ7bKCgosDoEIKnIadgReS3pm2+i1+3Ykf44kBTkNOyIvLYOBTpswev1au7cufJ6vVaHAiQFOQ07Iq+/dfhw9LqDB9MfB5qMnIYdkdfWokAHAABIp0OHotdRoAMARIEOAACQXvSgAwDioEAHAABIJ3rQAQBxUKADAACkU6wCPdY6AEDOoUAHAABIJ4a4AwDioEAHAABIJ4a4AwDicAQCgYDVQdhVVVWViouLVVlZqaKiIqvDsbVAICCv1yu32y2Hw2F1OECTkdOwI/L6W4MHSytWmNcNHSotW2ZJODh25DTsiLxOn1j1Ysb3oFdXV+u3v/2tRo0apZKSErndbrVo0ULHH3+8rrzySn3yySdRj/H5fHr88cd1xhlnqE2bNiooKFCfPn00Y8YM7dy5M+5rffnll7rmmmvUs2dP5efnq127dho/frxefPHFVO4ikqSmpsbqEICkIqdhR+S16EG3GXIadkReWyeje9ArKyt12mmnad26dXHbOJ1OzZo1S5dffrkk6ciRIzr33HNVVlYWs31JSYnmz5+vYcOGmdbPnTtXF154oY4cORLzcVdddZWeeuqphH5Fogc9fTwej8rKyjRhwgTl5eVZHQ7QZOQ07Ii8/laXLlJkh0GXLlJ5uTXx4JiR07Aj8jp9YtWLGV2g//73v9fPfvaz0PKYMWP0ne98Rzt27NDf//53eb1eSdJxxx2nr776SpL005/+VH/84x8lSS6XS1dffbU6d+6sp59+Wtu2bZMk9ezZU6tXr1bLli0lSeXl5TrxxBNVWVkpSRowYIAuvfRSrV27Vi+88ELo9f/0pz/p5ptvbnT8FOgAACBK69bSt985QoqLpQMHrIgGAGCRWPWi2+KY6rVp06bQ/eLiYr333ntyuVySpNraWj399NOSpD179kiS9u/frz//+c+hx9xxxx164IEHJEnTpk3TCSecoEAgoC1btmj27Nm68cYbJUmPPPJIqDgvLCzUokWLVFJSIsnooX/uueckSTNnztSNN94YigGZw+/3q6KiQu3atZPTmfFnbgANIqdhR+T1t+INcQ8EJM73zCrkNOyIvLZWRv/FBwwYELpfXV2tuXPnqra2Vhs3bjSde/7d735XklRWVmYaon7hhReG7vfr108DBw4MLb/xxhsx748dOzZUnEc+R3l5uZYxgUtG8vl8WrJkiXw+n9WhAElBTsOOyGtJHo/07QhAE59Pqq1NfzxoEnIadkReWyuje9Cvu+46vfDCC1qyZIn8fr+mTp1q2u5yufT9739fjz76qCRp5cqVpu29evWKWl61apWpbW1trdavX1/vY8KtXLlSI0aMiBlvbW2tasP+c62qqpJknMfh8Xii2judTrlcrlDyu1wueb1exTvrwOVyyel0yuv1yul0yul0xnzeILfbOLzBWRiD9+PJy8uT3++X3++X2+2W3++P+8Z0OBxyu92m2H0+n/x+f8z2wX0Nj70x++rxeBoVe/B5PB5PaD8aij18XxsTO8cp/r429jiFt+E4Re9r5HGSVO9nB8ep/th5P0XHbvVxCq4LBAKmWYIb2ldbHafq6ri9I94DB+Tu1Mny4xQr9pw7To18PwWfs75ChuNk/XHi/RR7X+Mdp+B+BP/lOKX++54phrivlgEKCgq0cOFC3Xzzzfrb3/4Wtf2EE07QZZddpjZt2kiS9u7da9oeed53YWFh6H5FRYUkY1h8+AGt7zHhj4tl5syZuvfee6PWl5WVqUWLFlHru3fvriFDhmjlypUqKChQ//79tXTp0tCQ/UiDBw9Wjx499OGHH2rgwIHq0KGDysrK4ibNWWedpYKCAs2dO1eTJk1STU2NFixYELOt2+3W5MmTVVFRodWrV2vcuHHavn27li9fHrN9+/btNWrUKG3YsEE1NTWh/Qie5x+pX79+of3r2rVraD+qq6tjth85cmRo/84888zQfsQzfvx4SdKCBQtC+7FkyZKYbQsLC0P7V15eHtqP8B9qwnGcknecgvu3aNEijlOYWMdpzZo1kqR33nknqj3HKXOOE+8nQ6LH6eDBgyosLMzJ47Rvxw61i9N26fvva9S0aRlznHg/Nfx+2rFjhyTjtMyNGzfGbM9xsv448X4ya+xxCn4H4Til7jitXr06ql1GTxJXVVWl888/X++//74kacSIEZo0aZK2bt2q2bNnh/6wf/jDH3Tbbbfphhtu0BNPPBF6vNfrNZ0vfvnll+vZZ5+VJDVv3lw1NTXauXOnunTpEmpz55136v777w8tb9y4UX369Akt//a3v9Udd9wRM95YPeilpaWqqKiIOUmcHX8BsrIHfd68eRo/frxatGjBL3UR+5opx4lfVBt/nI4cOaL58+dr/PjxUTOocpwy5zjxfjLH3pge9HfeeUcTJ05UXl5ebh6n9evl7N8/Zlvv55/LPWSI5ccpVuw5d5wa+X6qra1VWVmZzjnnnLhzFHGcrD9OvJ9i72t9PejvvPNO6DsIxyl1x2n//v0qKSnJnkni7rvvvlBxfvzxx+ujjz4K/aF69uypX/3qV5Kku+66S9ddd53atm1renx1dbVat24dWg4OOZcUOs+8pKREDocjdFAjfzkKf0z442LJz89Xfn5+1Pq8vLx6L1EQ/oEe3L/6hLdpzKUPwts01D6YuJH34wmP3eVyNTiBXnjsjdnXxsYefKMF2zQm9vA2jYmd4xRfIrGHt+E4mUUep+BrxHsdjlN8vJ9iy5Tj5HA45HA4cvM41XNtYfe3P/JnynGK1SZnjlMj30/BGFwuV4PPz3GKLxc+92K1yfTjFPkdhOMUWzK+75mer8HoLPTee++F7g8dOtT0hw2/jnlNTY2+/PJLDRo0yPT48FngI5eDbfPz89W3b99GPSb8cQAAAAk7fDj+tjjDgAEAuSOjC/Tw4QHLly83LUfOpl5QUKAJEyaYerBffvnl0P01a9Zo7dq1oeXwCeemTJkSur9w4ULTuewvvvhi6H6XLl1MPwwgczgcDhUWFsrB5WlgE+Q07Ii8VuxLrAUdPJi+OJAU5DTsiLy2Vkafg37LLbeYrms+atQonXPOOdq2bZueeeaZ0LDmbt26aevWrXI6nbr11lv10EMPSTKGDFxzzTXq1KmTnnzyydBEHt27d9eaNWvUqlUrSdKOHTs0YMCA0PD2AQMG6NJLL9WaNWv0z3/+M/T6Dz/8sP7f//t/jY4/1oXnAQBADnv9dem882Jve+YZ6Yor0hoOAMA6serFjC7Qd+3apdNPPz1qmHm4/Px8vf766zrnnHMkGcPdp0yZYhoeH65169aaP39+1KXS3nzzTV100UWmSd7CXX755Zo1a1aD5xSEo0BPH7/fr+3bt6u0tDShYwRkKnIadkReS3ruOekHP4i97c9/ln70o/TGgyYhp2FH5HX6xKoXM/ov3rFjR33++ed64IEHdNppp6lNmzZyuVxq0aKF+vXrpxtvvFErVqwIFeeSMdT97bff1qOPPqqRI0eqqKhI+fn56t27t2655RatXr065nXMp0yZouXLl2v69OkqLS1Vs2bN1KZNG40bN07PP/+8Zs+eTYJmML/fr/Ly8rgzPgLZhpyGHZHXqv8cdIa4Zx1yGnZEXlsro3vQsx096AAAwOThh6Uf/zj2tjvvlMIu9QoAsLes60EHGsvn82ndunVxrzsIZBtyGnZEXosedJshp2FH5LW1KNBhC36/X+vXr2coDmyDnIYdkddiFnebIadhR+S1tSjQAQAA0oXroAMA6kGBDgAAkC70oAMA6kGBDgAAkC70oAMA6kGBDgAAkC70oAMA6kGBDgAAkC7M4g4AqAcFOmzB6XSqe/fucjpJadgDOQ07Iq9Vfw/6vn3piwNJQU7DjshrazkCgUDA6iDsKtaF5wEAQA475RTp889jb3M4pKNHJbc7vTEBACwRq17kZxHYgs/n0xdffCGfz2d1KEBSkNOwI/Ja9fegBwJSRUX6YkGTkdOwI/LaWhTosI2CggKrQwCSipyGHeV8Xtd3Drok7dqVnjiQNDmf07Al8to6DHFPIYa4AwAAkzZtpAMH4m9/5RXpggvSFg4AwDoMcYdteb1eLV68WF6v1+pQgKQgp2FHOZ/XPp9UWWle17GjeXn58rSFg6bL+ZyGLZHX1qJAhy0EAgHt2bNHDAiBXZDTsKOcz+sDB4zzzMONG2depkDPKjmf07Al8tpaFOgAAADpsHdv9DoKdABAGAp0AACAdIi8znlBgTRypHnd9u2xC3kAQE6gQAcAAEiHb74xL7dtK/XrJ+Xnm9evWJG+mAAAGYUCHQAAIB3Wrzcv9+olud1GkR5u27b0xQQAyCgU6AAAAOkQWaAHC/POnc3ruRY6AOQsCnTYgsvl0uDBg+VyuawOBUgKchp2lPN5vW6debl/f+PfDh3M6ynQs0bO5zRsiby2ltvqAIBkcDqd6tGjh9VhAElDTsOOcj6v4/WgR14LnQI9a+R8TsOWyGtr0YMOW/B6vXr//ffl9XqtDgVICnIadpTTeV1RET2Le7BAb98+ui2yQk7nNGyLvLYWBTpswel0auDAgXI6SWnYAzkNO8rpvI7sPc/Lk3r2NO6XlJi37d+flpDQdDmd07At8tpaDHGHLTidTnWIPIcPyGLkNOwop/N640bz8vHHGzO4S1KbNuZtFOhZI6dzGrZFXluLn0VgCx6PR3PmzJHH47E6FCApyGnYUU7ndeQ10Lt3r7sfWaBHDoVHxsrpnIZtkdfWokCHbXCeDOyGnIYd5WxeRxbonTrV3Y8s0A8ckPz+lIeE5MjZnIatkdfWoUAHAABItciZ2cNnbo88B93vl6qrUx8TACDjUKADAACk2u7d5uXwAj2yB13iPHQAyFEU6AAAAKlWVWVebt267n5hoeRymbdToANATqJABwAASLXIIeutWtXddzjMBbvERHEAkKMo0AEAAFItskAvLDQvcy10AIAo0GETbrdbZ511ltzBa8oCWY6chh3ldF43VKBzLfSslNM5Ddsir61FgQ7bKCgosDoEIKnIadhRTuZ1ICAdPGheR4FuGzmZ07A98to6FOiwBa/Xq7lz53LNRtgGOQ07ytm8Pnw4+rrmFOi2kLM5DVsjr61FgQ5bcLvdmjRpEkNxYBvkNOwoZ/M61jXNGzoHnUniskLO5jRsjby2FgU6bKOmpsbqEICkIqdhRzmZ140p0OlBz1o5mdOwPfLaOhTosAWv16sFCxYwFAe2QU7DjnI2ryMLdLdbys83r6NAz0o5m9OwNfLaWhToAAAAqRRrBneHw7yOAh0AIAp0AACA1GpoBneJAh0AIIkCHQAAILUauga6xCRxAABJFOgAAACp1ZgCPbIHvbIy+tJsAADbo0AHAABIpWMp0AMBo0gHAOQUCnTYBtdqhN2Q07CjnMzryAK9VavoNpEFusQw9yyRkzkN2yOvrUOBDlvIy8vT5MmTlZeXZ3UoQFKQ07CjnM3rqirzclFRdJuWLaUWLczrdu5MXUxIipzNadgaeW0tCnTYgt/v1+7du+XnfD3YBDkNO8rZvG7MEHeHQ+ra1byuvDx1MSEpcjanYWvktbUo0GELfr9fq1ev5oMEtkFOw45yNq8bU6BLFOhZKGdzGrZGXluLkwtgC263W+PGjbM6DCBpyGnYUc7mdWML9C5dzMsU6BkvZ3MatkZeW4sedNiC3+/X1q1b+aUPtkFOw45yNq8bcw66RA96FsrZnIatkdfWokCHLfh8Pi1fvlw+n8/qUICkIKdhRzmV1+vXS9dcI11/vfTRR+ZtDHG3jZzKaeQM8tpaDHEHAABIJp9PuuQSacWK2NsTKdD37DHut2+fvPgAABmLHnQAAIBkWrUqfnEuNb5A37zZWNehg3TPPUkLDwCQuSjQAQAAkunTT+vf3tgCXZI8HuPfe++V1q5tWlwAgIxHgQ4AAJBMW7bUvz1egd65s3E99Hj+9a9jDgkAkB0o0AEAAJLp66/r3x5vFve8PGM4ezzLlx9zSACA7ECBDltwOBxq3769HPX1PABZhJyGHeVMXjdUoMfrQZdiD3MPWr362OJByuRMTiOnkNfWcgQCgYDVQdhVVVWViouLVVlZqaJ4v5YDAAB7GTTImCguHq9Xcrlibzv3XOmNN2Jva9FCOniw/mHwAICsEatepAcdtuDz+bRu3Tqu1wjbIKdhRzmT1/X1oBcVxS/Opfp70A8fliorjz0uJF3O5DRyCnltLQp02EZNTY3VIQBJRU7Djmyf17W10t698bd37lz/4+sr0CXj2ujIKLbPaeQk8to6FOiwBZfLpSFDhshVX68EkEXIadhRTuT1zp31b+/Uqf7t3brVv50CPaPkRE4j55DX1qJAhy34fD598cUXDMWBbZDTsKOcyOuGJohrqECnBz2r5EROI+eQ19aiQIct+P1+bdu2TX6/3+pQgKQgp2FHOZHXDRXoffrUv/2kk+rfToGeUXIip5FzyGtrUaADAAAkS0MF+qmn1r+9Y0fpppuO/fkBAFnNbXUAAAAAtlHfOejduknf+U7Dz/F//yedcIL01VfSli3Sa6/Vbdu9u6kRAgAyGAU6AABAskT2cJ92mnTccca557feKjVv3vBzuFzSf/2Xcf///o8CHQByCAU6AABAMhw8KD3zjHnd+edLP/vZsT9n+/bm5T17jv25AAAZj3PQAQAAmqqmJvb55V26NO15O3QwL9ODDgC2RoEOW3A6nerXr5+cTlIa9kBOw45sndevviqtXRu9vqHLpjUkskDft0/yepv2nEgaW+c0chZ5bS3+6rAFl8ul/v37y+VyWR0KkBTkNOzI1nm9eHH0OqdTGjq0ac8bOcRdkioqmvacSBpb5zRyFnltLQp02ILX69XixYvlpVcBNkFOw45snderVkWvO+ssqbi4ac/btq3kcJjXcR56xrB1TiNnkdfWokCHLTidTnXt2pWhOLANchp2ZOu83rIlet2f/9z053W7pZIS8zrOQ88Yts5p5Czy2lr81WELTqdTPXr04IMEtkFOw45sm9cej7Rjh3ndsmVSv37Jef7I89DpQc8Yts1p5DTy2lr81WELXq9X77//PkNxYBvkNOzItnm9a5fk95vXde+evOdnJveMZducRk4jr61FgQ5bCAQCqq6uViAQsDoUICnIadiRbfN6717zssMRPSy9KSIniqNAzxi2zWnkNPLaWhToAAAATbFvn3m5TRtjBvdkYYg7AOQMCnQAAICmiOxBb9s2uc8fWaDv3Jnc5wcAZAwKdAAAgKaI7EFP5vB2SSotNS/HuqQbAMAWKNABAACaItU96L16mZe3bJF+97vkvgYAICNQoAMAADRFqnvQjz8+et1//zfnogOADWVNgf7FF1/o6quvVu/evVVQUKCioiIdf/zxuvTSS1VWVmZq6/P59Pjjj+uMM85QmzZtVFBQoD59+mjGjBnaWc95W19++aWuueYa9ezZU/n5+WrXrp3Gjx+vF198MdW7hyZyuVwaOXKkXC6X1aEASUFOw45sm9ep7kHv1k06+eTo9UuWJPd1kDDb5jRyGnltLbfVATTGvffeq3vvvdc01f+RI0dUXV2tTZs2qVWrVpowYUJo/bnnnhtVtG/cuFGPPPKI/vGPf2j+/PkaNmyYafvcuXN14YUX6siRI6F1e/fu1bvvvqt3331Xc+fO1VNPPSWHw5HCPcWxcjqd6hA5iQ6Qxchp2JFt8zqyQE92D7ok/elP0plnmtd98YU0dWryXwuNZtucRk4jr62V8T3ojz76qO65555QcT5y5EjddttteuCBB3Tbbbdp0qRJateuXaj9nXfeGSrOXS6XrrvuOt19993q3r27JGnfvn266KKLdOjQodBjysvLNW3atFBxPmDAAN1333269NJLQ21mzZqlv/zlLynfXxwbj8ejOXPmyOPxWB0KkBTkNOzItnkdOcQ92T3oknTGGdIFF5jXff118l8HCbFtTiOnkdfWyuge9KqqKv33f/93aPmxxx7TDTfcELf9/v379ec//zm0fMcdd+iBBx6QJE2bNk0nnHCCAoGAtmzZotmzZ+vGG2+UJD3yyCOqrKyUJBUWFmrRokUq+fbXb6fTqeeee06SNHPmTN14440M98hAbrdbZ555ptzujE5poNHIadiRbfM61UPcgwYNkv71r7plLrdmOdvmNHIaeW2tjO5Bf+WVV1RVVSVJKi0t1cGDB3XyySerZcuWateunc477zx98sknofZlZWWmIeoXXnhh6H6/fv00cODA0PIbb7wR8/7YsWNDxXnkc5SXl2vZsmVJ2jskW0FBgdUhAElFTsOObJnXqZ4kLqhLF/MyBXpGsGVOI+eR19bJ6J9FFi9eHLq/fft2/fSnPw0tHz58WK+//rrmzJmjZ599VhdffLFWrlxpenyviMuS9OrVS6u+vXZosG1tba3Wr19f72PCrVy5UiNGjIgZb21trWpra0PLwR8XPB5PzCEiTqdTLpdLPp9PkjEk3+v1ms61D+dyueR0OuX1euV0OuV0OusdehL81cvr9Zrux5OXlye/3y+/3y+32y2/3x+KLZLD4ZDb7TbF7vP55Pf7Y7YP7mt47I3ZV4/H06jYA4GA5s2bp/Hjx6tFixaNij18XxsTO8cp/r429jiFtwnuB8cp9nGqra3V/PnzNX78eOXl5cXcV45T/bHzfoqO3erj5PF49M4772jixInKy8uzx3EKBKS9exU+Q42nuFj6dv+TeZwc7dqZvrgFdu2SQ+L9VM++pvr9VFtbq7KyMp1zzjlxR1jyuWf9ceL/p9j7Gu84BT+rg99BOE6pPU5RMcR9tQwQOeN6fn6+rrvuOhUUFOiJJ55QZWWlvF6vrr32Wp199tnaGzHErKioyLRcWFgYul9RUSHJGBYffkDre0z442KZOXOm7r333qj1ZWVlatGiRdT67t27a8iQIVq5cqUKCgrUv39/LV26VHviXDZl8ODB6tGjhz788EMNHDhQHTp0UFlZWdykOeuss1RQUKC5c+dq0qRJqqmp0YIFC2K2dbvdmjx5sioqKrR69WqNGzdO27dv1/Lly2O2b9++vUaNGqUNGzaopqYmtB/btm2L2b5fv36h/evatWtoP6qrq2O2HzlyZGj/zjzzzNB+xDN+/HhJ0oIFC0L7sSTO7LaFhYWh/SsvLw/tR/gPNeE4Tsk7TsH9W7RoEccpTKzjtGbNGknSO++8E9We45Q5x4n3kyHR43Tw4EEVFhba4zh5vcqL2M+FK1bo8DffSErucWrz5ZcaHdbeX1Ehl8T7KYZ0vZ927NghSdq0aZM2btwYsz2fe9Yfp0z43MvG4xT8DsJxSt1xWr16dVQ7RyDezw0ZYMKECaYvp4888oj+67/+S5L05ptvamrYzKVPPvmkPv74Yz3xxBOhdV6v1/Rr5uWXX65nn31WktS8eXPV1NRo586d6hI2ZOzOO+/U/fffH1reuHGj+vTpE1r+7W9/qzvuuCNmvLF60EtLS1VRURFV+Ev2/AWIHnSOE7+oGpp6nI4cOUIPujL/OPF+Mseekz3oW7bIETHazlNRIX37/35Sj9P69co76STzg44cke/b1+D9FL2v9KBHy8XjxP9PsfeVHvT6Y0/Hcdq/f79KSkpUWVkZqhczuge9devWpuWxY8eG7o8ZM8a0bdOmTWobMSlLdXW16TmCQ84lhc4zLykpkcPhCB3UyF+Owh8T/rhY8vPzlZ+fH7U+Ly8v6gt2uPAP9GAi1Ce8TX3PG6tNQ+2DiRt5P57w2F0uV4MT6IXH3ph9bWzswTdasE1jYg9v05jYOU7xJRJ7eBuOk1nkcQq+RrzX4TjFx/sptkw5Tg6HQw6Hwx7Haf/+yCdSXkmJFHFZ1qQcp44doxvv2ydX584Jxc77qeH2jT1OwRhcLleDz8/nXny58LkXq02mH6fI7yAcp9iS8X3P9HwNRmeh8EndIkVej7x58+YaNGiQad2mTZviLgfb5ufnq2/fvo16TPjjAAAAYl4DPeI7StK0adPw6wMAslpGF+jf+973TMsffPBBzPuSNGzYME2YMMHUg/3yyy+H7q9Zs0Zr164NLYcPj58yZUro/sKFC03nsr/44ouh+126dNGwYcOOZVcAAIAdpWsGd0lyu6Xi4vpfHwCQ1TJ6iPvQoUM1ceJEzZs3T5J0++23a8OGDWrevLn++te/htr1799f48ePl8vl0k033aSHHnpIkvT73/9e+/btU6dOnfTkk0+G2nfv3l1XXHFFaHnGjBl6/PHHVV1drYMHD2r06NG69NJLtWbNGlORf8cddzQ43AIAAOSQdF0DPfz5Kyvjvz4AIKtl9CRxkrRr1y6dffbZoRmNI3Xq1EnvvvuuTjzxRElSTU2NpkyZovfeey9m+9atW2v+/PlRl0p78803ddFFF5kmeQt3+eWXa9asWQ2eUxCuqqpKxcXFppP+kRqBQCA0mUPk6Q9ANiKnYUe2zOtf/1q666665alTpddfT93rDR8uffZZ3fLf/iZdc03qXg/1smVOI+eR1+kTq17M6CHuktSxY0d98skn+vWvf62TTz5ZLVu2VPPmzdW/f3/dfvvtWrFiRag4l6SCggK9/fbbevTRRzVy5EgVFRUpPz9fvXv31i233KLVq1fHvI75lClTtHz5ck2fPl2lpaVq1qyZ2rRpo3Hjxun555/X7NmzEyrOkX41NTVWhwAkFTkNO7JdXu/aZV5ORw96uL17JZ/PuB47LGG7nAZEXlsp43vQsxk96Onj8XhUVlamCRMmNGpmRiDTkdOwI1vm9dSp0ptv1i3ffbd0772pe71p06Tnnzeva9bMKNAvvVT661+lGFeUQWrYMqeR88jr9IlVL2b0OehAY+Xl5Wny5MlWhwEkDTkNO7JlXm/bZl7u3j21rxerh/7oUePf2bOlXr2ke+5JbQwIsWVOI+eR19ZizDZswe/3a/fu3fL7/VaHAiQFOQ07sl1eb9worVxpXtejR2pfs6FZ4p94guHuaWS7nAZEXluNAh224PP5tGTJEvl8PqtDAZKCnIYd2S6vf/97czFcUCCddlpqX7Ohc9x37pR27EhtDAixXU4DIq+tRoEOAACQqEBAeu0187rLL5datUrt6zbmOutffJHaGAAAKUOBDgAAEE9lpfTee9Lhw+b1X38t7d5tXnfbbamPpzGzxG/cmPo4AAApcUyTxPl8Pr311lv64IMPtGXLFlVVVTV4joLD4Yh7bXIAAICM89VX0pAhUlWV1L69tGqV1LGjsW3VKnPbVq2kvn1TH1NjCvRNm1IfBwAgJRIu0D/55BP94Ac/0ObNmxv9mEAgwEXuAQBAdrnrLqM4l6Q9e6Q//ME47/zdd6WJE81tBw6U0vFdp7S04TYU6ACQtRIq0Ddt2qQJEybo4MGDauzl0ynMAQBA1gkEpOeeM6/7wx+k//1fKdbESSedlJ64gj349aFAB4CsldA56A888ICqq6slGYV3Y25AOjgcDhUWFpJzsA1yGnaUVXldWRl7fbxZjU8+OXWxhHM6G56IbssWyetNSzi5LqtyGmgk8tpajkBju8Ilde/eXeXl5aHlBB4qh8ORc1P1V1VVqbi4WJWVlSoqKrI6HAAA0Fhr1hjD1hvD5ZK2bpW6dk1tTEF/+IN0++11yzfcID3+uLnNpk1Sr17piQcAcExi1YsJDXHf/e1spcFzym+66SZdcskl6ty5s5o1a5b8iIFG8vv92r59u0pLS+V0cnECZD9yGnaUVXkd1iHRoD/9KX3FuSTdeqtUUSG9/LJx3fXf/156/vm68+UlCvQ0yaqcBhqJvLZWQgV6x44dtWPHDjkcDk2YMEF//vOfUxUXkBC/36/y8nJ17dqVDxLYAjkNO8qqvP7mm8a1e+QR6cYbUxtLJJdL+u1vjVvQ8cdLn39et7xpkzR+fHrjykFZldNAI5HX1kroLz527NjQsPbu3bunJCDgWLjdbo0aNUpu9zFdORDIOOQ07Cir8nrv3sa1O+OM1MbRWL17m5eZKC4tsiqngUYir62VUIH+s5/9TPn5+ZKkefPm6dChQykJCkiUz+fTunXrcm6eA9gXOQ07yqq83revce1OPDG1cTRWZIH+5ZfWxJFjsiqngUYir62VUIF+4okn6q9//aucTqfKy8t15pln6u2339bRo0dTFR/QKH6/X+vXr5ff77c6FCApyGnYUVbldWN60M87T8qUOXj69TMvv/eeREdKymVVTgONRF5bK+FxC5dffrmOHj2qa6+9VitWrNDkyZPldDrVvn17NW/ePO7jHA6HNjHcCgAAZIOGCvQTTpAefDA9sTTGOecYl2ALfqE+dEj617+kK66wNi4AQEISLtD/+c9/asaMGXI4HKHz0X0+n75pYDIVrqMHAACyRrwh7gMGSK++KvXsmTm955LUubMxKdz8+XXrHnuMAh0AskxCQ9yXLVumK6+8MnTuucPhaNQNAAAgq8TqQb/0UumNN6S+fTOrOA+69lrz8uLF0oYN1sQCADgmCRXov/3tb+XxeCi6AQCAvUUW6G+8YVxrPHIytkxy7rlShw7mde+/b00sAIBjklCBvnjxYlNxHggEGnUDAADIKpEFetu21sSRiLw86eyzzeuWLbMmFgDAMUmoQD9w4IAkozBv1qyZHn30UX311Vc6fPiw/H5/vTem6UcqOZ1Ode/eXU5nQikNZCxyGnaUNXldWxs9A3pJiTWxJOqkk8zLTNCbUlmT00ACyGtrJTRJ3HHHHae1a9fK4XDo/PPP1w033JCquICEuFwuDRkyxOowgKQhp2FHWZPXFRXR67KhB12Sjj/evEyBnlJZk9NAAshrayX0s8j3v//90H2Xy5X0YIBj5fP59MUXXzBSA7ZBTsOOsiavd+82Lzud2VOg9+xpXv76a4nTDVMma3IaSAB5ba2ECvTbb79dPXv2VCAQ0BtvvKH169enKi4gYQUFBVaHACQVOQ07yoq83rXLvNy+vVGkZ4OOHc3LHo+0ZYv09NPGRHd84U66rMhpIEHktXUcgQRmcdu2bZs2bdqkiy++WHv37lVRUZFuvPFGjR8/XqWlpWrevHm9j+/evXuTA84mVVVVKi4uVmVlpYqKiqwOBwAANMYzz0hXXVW3PGiQtGKFdfEkoqZGatHCvK5FC+nwYeP+f/+3NHNm+uMCAESJVS8mVKA7nc6oWdwbe8k1h8Mhr9ebYMjZjQI9fbxer5YuXaoRI0bI7U5oagUgI5HTsKOsyevf/1762c/qlsePl8rKrIsnUUVFUnV17G0FBdK+fVIDnSponKzJaSAB5HX6xKoXEx6vFX7pNIfD0ehLrXG5NaRSIBDQnj17yDPYBjkNO8qavI48Bz3y2uKZrr54a2qkpUvTF4vNZU1OAwkgr62VcIHucDhMvebB5fpuAAAAWSPyHPTI87ozXUM/KKxdm544AAAJO6YxC/yaAgAAbCuyQLdTD7okfflleuIAACQsoQJ99OjR9IgDAAB7+/pr87LdetAp0AEgYyVUoC9cuDBFYQAAAKTJtm1Su3bRs51Lkt8vbdxoXnfccemJK1ko0AEga2XJRT0BAACS4OabpR49pNatpQceiN5eXi4dOWJe16dPWkJLmoYK9K++Mq6PDgDIOMybD1twuVwaPHiwXC6X1aEASUFOw44sz+v//Ef6y1+M+x6PdOedUmGh1KWLNGWKlJ8vbdhgfkzLllLnzumPtSkaKtB9PqNI79cvPfHYmOU5DaQAeW0tCnTYgtPpVI8ePawOA0gachp2ZHlef/ZZ9LoZM4x/Tz1VWrAgevh3nz5Sts2/05hJ7b78kgI9CSzPaSAFyGtrJVSgX3311cf8Qg6HQ3//+9+P+fFAfbxerz788EONHj1abje/OyH7kdOwI8vzev36+Ns++UR6+uno88+zbXi71PgCHU1meU4DKUBeWyuhv/jTTz99TLO4BwIBCnSklNPp1MCBA+V0Mq0C7IGchh1Zntfbt9e/fc4cKTK2bCzQG9PzRYGeFJbnNJAC5LW1uA46bMHpdKpDtl2nFqgHOQ07sjyv9+6tf3vk+eeS1LdvamJJpcJCaehQ6fPP47dZty598diY5TkNpAB5ba1j+lnE4XAkdANSzePxaM6cOfIwKy1sgpyGHVme1w0V6F9+Gfsc9Gx0221199u3l/7wB/P2VaskOlyazPKcBlKAvLZWwgV6IBBo1C28LZAOXq/X6hCApCKnYUeW5nVDBXos2VqgT5smLV4s/f3v0urV0oUXmrfv329cUg5Nxmc17Ii8tk5CQ9wXLFhQ7/a9e/dq69ateuGFF/Tpp5/K4XCoXbt2evLJJ9WqVasmBQoAANAkiRboxcVSu3apiSUdRo40bpLRW15YKFVX121ftUrq1s2a2AAAMSVUoI8ZM6ZR7W699VY9+eSTuvbaa1VRUaH/+7//09tvv31MAQIAADSZz2f0GifipJOy7xJr8Tgcxv4sXly3bvVqaeJE62ICAERJ2dR8V199tcaNG6dAIKB33nlHL7zwQqpeCgAAoH4HDiR+zvXYsamIxDr9+5uXN2+2Jg4AQFwpnTu/X79+oftPPvlkKl8KAAAgvkSHt/fsKd14Y0pCsUzPnublrVstCQMAEF/KCvTa2lotWrRIDodDgUBAy5cvT9VLAQCAXBUISP/zP9KwYdIPfyjt3h27XSIF+nnnSWvXSl27JiXEjBF5ffQtWywJAwAQnyOQwDTrH374Yb3b/X6/ampqVF5erqeeekpLliwJFej5+fmqqalpcsDZpKqqSsXFxaqsrFRRUZHV4dhaIBBQdXW1CgsLubQfbIGchh2lJK/nz5e++9265dNPl/797+h2b70lTZliXud0SkVFxvD3cEuWSKedlpz4MsmHH0rh8wm1aCEdPGif8+wtwGc17Ii8Tp9Y9WJCk8SNHTv2mA9Sly5djulxQGMVFBRYHQKQVOQ07Cjpef3mm+bljz6SKirMs6/7fNLtt5vbDR0qLVpkFKkPPij98pdSXp70859Lp56a3BgzReQQ98OHjZEF2TxTfQbgsxp2RF5b55iGuDf2WujB3nOHw6HJkycnO3YgxOv1au7cuVyzEbZBTsOOUpLXmzZFr1u71rw8c6a0bp15XWmpUZxL0k9+Iu3aZRSrP/+5fXuUu3SR3BF9MwxzbxI+q2FH5LW1jqlAdzgcjboFdezYUb/4xS+SFjQQye12a9KkSXJHfvEAshQ5DTtKSV7Hmugsshh/8cXoNqWl5uWiIqMH3c7cbqlzZ/O68nJpzx7pm28Sn+UefFbDlshrayVcoDe29zx4GzlypBYuXKhOnTqlIn4gJNfmOID9kdOwo6TndaxJ4bZvr7vv90urVkW36dMnuXFki8iJ7/77v43J4zp3NkYSUKQnjM9q2BF5bZ2Efha58sorGzwH3el0qlWrVjruuOM0ZswYDRkypEkBAo3h9Xq1YMECTZo0SXl27wFBTiCnYUdJz2ufT9q/P3r9jh1193fujN7uckmXXNL0189GkQV6+GiDhx6SJk+WvvOdtIaUzfishh2R19ZKqEB/+umnUxQGAABAgg4cMHrII4UX6F9/Hb191y6pbduUhZXRunevf/tLL1GgA4CFEirQt23bZlru2rWrXC5XUgMCAABolHjXNg8f4r5rl3lb1665W5xLUr9+9W9fsiQ9cQAAYkqoQO/Zs2doiHtJSYm+/vprCnQAAGCNiorY63fsMM6ldjiiz1Hv2DH1cWWyE0+sf/t//iN5PPafMA8AMlRCk8Tl5+eHJn8bO3Ys5yQAAADrxOtBP3TIGP4uRfegd+iQ0pAy3qhR0oAB8bd7vdJXX6UvHgCASUIFeufOnUOXUOuQ6//BAQAAa8XrQZfqzkOnB93M6ZTmzpUuuMCYuT3WZL4bN6Y/LgCApAQL9HHjxinw7eU3vuLXVWQYrtUIuyGnYUdJzet4PehS3XnokQU6HQzGZdVeecWYQO/zz6Vhw8zbY02sh7j4rIYdkdfWSahA/8lPfhIa5v7+++9rxYoVqYoLSEheXp4mT57MaRewDXIadpT0vG5MD3rkEPdc70GPpUsX8zIFeqPxWQ07Iq+tlVCBPmDAAD355JPKy8uTx+PR+PHj9eyzz8rj8aQqPqBR/H6/du/eLX+sy+0AWYichh0lPa/pQU8OCvRjxmc17Ii8tlZCYxfGjRsnSWrTpo12796tiooKXXnllbr++uvVr18/FRcXh2Z5j+RwOPTee+81PWIgBr/fr9WrV2v06NFyOhP63QnISOQ07CjpeV1fD/qvfy01ayZ98415PT3o0SjQjxmf1bAj8tpajkDwpPJGcDqdUQV4+MPjFeeBQEAOh0M+n+8Yw8xOVVVVKi4uVmVlpYqKiqwOBwAAexk9Wlq0KLHHrFwpnXRSauLJVn//u3TttXXLQ4dKy5ZZFw8A5IhY9eIx/SQSvNSapNCs7uHrw29AOvj9fm3dupWhOLANchp2dMx5He/7RH096PF07pz4Y+yOHvRjxmc17Ii8ttYxFejhRXnkusgbkA4+n0/Lly/PuVEasC9yGnaUcF5/8400aZIxVH3iRKmqyry9vnPQY8nLk9q2TewxuSCyQN+1y7geOhrEZzXsiLy2VsIFeqxe8oZuAAAACbv6amnePKNYfPtt6c9/rtsWCEj79iX2fJ06SXQeROvUybwcCEh79lgTCwDkuIQmidu8eXOq4gAAAKhz9KhRnIebM0f6+c+N+zU10b28f/ub9KtfSeXlsZ+T4e2xtWsnOZ1S+HDWXbv4ewGABRIq0Hv06JGqOAAAAOps2BC97qOPjN5dh0M6cCB6+3nnST/8oXT99cbEZ5EoOGNzuYwiPfySdJHXjwcApAXz5gMAgMyzZk3s9cHCsbIyeltRkdETfPLJsR9LgR5f5OXnKNABwBIJ9aD36tUrdP/qq6/WnXfeWW/7Dz74QMvCLtPxk5/8JMHwAABATopXoG/YYJwzHdmD3rKlMQmcJPXpE/uxFOjxdeworVpVt3zHHdLmzcY8AKWl1sUFADkmoQJ9y5YtkowZ2/c1YmKW1157TY888khomQIdqeJwONS+fXuuHADbIKdhRwnl9erVsddv3CideWZ0D3pxcd39sA4FEwr0+CJ70L/5RrrnHunRR6WvvpJatLAkrEzHZzXsiLy2VsJD3BM9UMzkjnRwu90aNWqU3O6EfnMCMhY5DTtKKK/r60GXonvQW7euu9+jR+zZ2inQ44ss0IN27TJm0EdMfFbDjshra6X0HPRDhw6l8umBEJ/Pp3Xr1nG9RtgGOQ07anRe19YaPeWxBNdH9qCHF+j5+bGvd06BHl+8Al2SvvgifXFkGT6rYUfktbVSVqAfOHBACxcuZGgE0qampsbqEICkIqdhR43K6/XrpXhfDOP1oIcPcZeiL8EmSf37N/zauapnz/jb1q1LWxjZiM9q2BF5bZ16xy30incOl6Qnn3xSr732WsxtPp9Pu3btksfjCa1r2bLlsUUINILL5dKQIUOsDgNIGnIadtTovI43vF0yetADgfqHuEvSLbdIv/513fIJJxgTySG2E06Ivy3edeXBZzVsiby2Vr0F+pYtW+RwOEznkAfvV1VVqaqqqtEvdNxxxx1jiEDDfD6fVq5cqUGDBsnlclkdDtBk5DTsqNF5vXVr/G0HDxrnRdc3SZwk/fjH0iuvSP/5j7H8058eU8w5o08f4xJ1fn/0th070h9PluCzGnZEXlurUUPcHQ5H1FD14LqGbsG2EydOTH70wLf8fr+2bdsmf6wvFkAWIqdhR43O64Z6bDdubLgHvW1b6eOPpX/9S/r0U+NyYYiveXPp+9+PvW3nztiFO/ishi2R19ZK6SRxwd72nj176vbbb0/lSwEAALtoqMd23bqGe9AlqahIOv98adiw5MVmZ3/8ozRgQPR6r1favTv98QBADmqwQA9eJi3yUmnh6yNvDodDhYWFOuWUU3TXXXfps88+U9tYs6kCAABEaqgH/bPPGu5BR+K6dZNWrZKqqqTIYa0McweAtKj3HPTIYQ1OpzM0bH3GjBl68MEHUxcZAADITZEF+ujR0ocf1i3Pn28MyQ4XqwcdiXM6pcJC45J04UV5eTkjEQAgDRIe4h6rNx0AACApvF7pm2/M66ZPNy9v2RJ96S960JOra1fzMjO5A0BaJFSgP/XUU6HbZZddlqqY6uX1enXKKaeYJqKbHvkft4zZBx9//HGdccYZatOmjQoKCtSnTx/NmDFDO3fujPv8X375pa655hr17NlT+fn5ateuncaPH68XX3wxhXsFAAAkGcV55MRE3/uedPLJ9T+OAj25unUzL1OgA0Ba1DvEPdJVV12VqjgabebMmfr888/rbXPkyBGde+65KisrM63fuHGjHnnkEf3jH//Q/PnzNSxiqNbcuXN14YUX6siRI6F1e/fu1bvvvqt3331Xc+fO1VNPPRU1oz2s53Q61a9fPzmdKZ33EEgbchp2ZMrrvXulH/xA+ve/pfPOk/7yF2NSt6+/Nj+oWTOpXTvpD3+Qxo+P/+QMcU+uyB50zkGPic9q2BF5ba2ECvQ9e/bo+eefDy2Xlpbq/PPPj9n2lVdeUXnYr63Tpk1Tu3btjjFMw8qVK3X//fc32O7OO+8MFecul0tXX321OnfurKefflrbtm3Tvn37dNFFF2n16tVq2bKlJKm8vFzTpk0LFecDBgzQpZdeqrVr1+qFF16QJM2aNUvDhw/XzTff3KT9QPK5XC7179/f6jCApCGnYUemvH7wQeNcckl69lnjsmgPPxzdU9uli+RwSGefbdyPLOCD2rRJXeC5iCHujcJnNeyIvLZWQj+LvP766/rxj3+sW2+9VbfeequOHj0at63D4TC1ffXVV5sUqMfj0VVXXSWPx6Nhw4apa+R/HN/av3+//vznP4eW77jjDj3xxBO69957VVZWFur93rJli2bPnh1q98gjj6jy20u2FBYWatGiRbrrrrv0/PPPa9q0aaF2M2fOlM/na9K+IPm8Xq8WL14sr9drdShAUpDTsCNTXi9YYN74yCPG0PbIArxLF+Nfh8MY6h5PEzsBEIECvVH4rIYdkdfWSqhAn//tL92BQEAdOnTQRRddFLft+eefry5duoQmlIscbp6oBx54QMuXL1d+fr5mzZoltzt2539ZWZlpiPqFF14Yut+vXz8NHDgwtPzGG2/EvD927FiVlJTEfI7y8nItW7asSfuC5HM6neratStDcWAb5DTsKJTXDoe0ZEl0g40bY/egB02ZEvuJi4ulvLzkBQrOQW8kPqthR+S1tRL6q69du1aS0Tt+xhln1HvQHA6HTj/99KjHHovly5frN7/5jSTpvvvu04ABA+K2XblypWm5V69ecZeDbWtra7V+/fpGPSbWa8B6TqdTPXr04IMEtkFOw45CeR3vfOalS6N70MN7csePjy4cJal9++QFCUNkD3p1tXF9dJjwWQ07Iq+tldA56N98801oiHinTp0abN+hQwdJRo/7N5GXTGkkj8ej6dOny+Px6LTTTtNtt91Wb/u9e/ealouKikzLhYWFofsVFRWSjGHx4ZeOq+8x4Y+LVFtbq9ra2tBy1bf/kXk8Hnk8nqj2TqdTLpcrNGTe5XLJ6/XGvYydy+WS0+mU1+uV0+mU0+mM+bxBwVEGXq/XdD+evLw8+f1++f1+ud1u+f3+uMP5HQ6H3G63KXafzyd/5My7EfsaHntj9tXj8TQqdkn68MMPNWrUKBUUFDQq9vB9bUzsHKf4+9rY4xTeJrgfHKfYx6m2tlb//ve/NWrUqKgRQxynzDlOvJ/MsTd0nILDJsfs3x/zC4jvk0/kKC839R74OnaUSzJid7nk/ulPpR//2PQ4f+vW8n37ehynJL2fOnRQ5JiEwI4d8vbpE3dfc/H9dPToUS1evFinn3563GKGzz3rj5Pl7ydl13EKflYHv4NwnFJ7nKJiiPtqMRw6dCh0/8CBAw22D57THfnYRNx///1asWKFmjdvrqeffloul6ve9pEHp77l4I8NiTwm/HGRZs6cqXvvvTdqfVlZmVq0aBG1vnv37hoyZIhWrlypgoIC9e/fX0uXLtWePXtiPv/gwYPVo0cPffjhhxo4cKA6dOigsrKyuElz1llnqaCgQHPnztWkSZNUU1OjBZHn/H3L7XZr8uTJqqio0OrVqzVu3Dht375dy5cvj9m+ffv2GjVqlDZs2KCamprQfmzbti1m+379+oX2r2vXrqH9qK6ujtl+5MiRof0788wzQ/sRz/jx43Xw4EG9//77of1YEmv4pIwfXIL7V15eHtqP8FEU4ThOyTtOwf1btGgRxylMrOO0evVqHTx4MObpQRynzDlOvJ8MiRyn1hs3GkV2DJ5nn5WnRQuF/yy+au9eDZbqjtPkyVEF+o6iIn3x7d+K45S899PU1q3lCPu+d3jDBr27YUPMtrn6ftqxY4eqq6u1ceNGbdy4MWZ7PvesP06Z8H7KxuMU/A7CcUrt971IjkC8nxti6NSpk/bs2aNAIKDS0lJt3rw57q+FPp9Pxx13nMrLyxUIBNS+fXvt2rWrsS8lSdq+fbt69eolr9erP/7xj/rJT34S2tazZ09t3bpVknH5t6efflqS9Itf/EIzZ84Mtdu/f79ah10bderUqXrzzTclSV26dFF5eblqa2tVUFAQKsRnzJihhx56KPSYzz//XKecckpo+YknntB1110XFW+sHvTS0lJVVFRE9cpL9vwFyKpfVAOBgObNm6fx48erRYsW/FIXsa+Zcpz4RbXxx+nIkSOaP3++xo8fr7yIc2s5TplznHg/mWNv6Dh5PB4dOvVUtY/xhSQe78KFco8ZY4o9cPrpcixeXNfmpZcUOPdc075ynOLH3uj30ymnyLFqVWg58OST8l5+edz2ufh+qq2tVVlZmc4555y4nUh87ll/nDLi/ZRFx8nj8eidd94JfQfhOKXuOO3fv18lJSWqrKwM1YsJ9aD36NFDu3fvliTt2LFDM2fO1C9/+cuYbWfOnKkdO3aEept79uyZyEtJMoarB/8gt912W9zh7bNmzdKsWbN01VVX6bvf/a5p26ZNm0zF9aZNm0L3Bw0aJEnKz89X3759Q7/UhLeJtRx8XKT8/Hzl5+dHrc/Ly4v6gh0u/AM9cihrLOFt6nveWG0aah9M3Mj78YTH7nK5GhzhEB57Y/a1sbEH32jBNo2JPbxNY2LnOMWXSOzhbThOZpHHKfga8V6H4xQf76fYLD9OR46o7bp1DT6P6TlPOkmSOXbHM89IEyZImzdLP/iB3BdeaMzyHid2jpNZo99P3bpJYQW6Y/Nm3k9hnE5nKAaXy9Xg8/O5F19OvJ9itMn04xT5HYTjFFsyvu+Znq/B6MIEJ31zOBwKBAK6++67NW3aNH3wwQfatWuXdu/erQ8++EDTpk3Tr371q1A7h8OhUaNGJfJSx2zChAmmIvnll18O3V+zZo1psrqpU6eG7k8Jmxl24cKFpnPZX3zxxdD9Ll26aNiwYUmPGwAAu3MsXy5nPT0RUTp2lMKuqhLSu7cx43tlpTR7dlRxjiQ54QTz8ooV1sQBADkkoR70adOmhYZ+B4vvf/7zn/rnP/8Z1TZYmIc/NlGtW7c2XeIs3Lx583T48GFJRs/+sGHDNHz4cJWUlOimm24Kxfn73/9e+/btU6dOnfTkk0+GHt+9e3ddccUVoeUZM2bo8ccfV3V1tQ4ePKjRo0fr0ksv1Zo1a0xF/h133NHgLzoAACCa45NPoldu3SpNnRq7+Pu29zz2kzmkiElckWSDB5uXP/pI8vkkvgcBQMokVKAPGzZM55xzjubPny+HwxEq0mMJFucOh0Pjx4/X8OHDEw6uZ8+epuI4clvwHPSxY8eGzkGXpN/85jdatWqV3nvvPfl8Pj3xxBOmx7Zu3VovvfSSWrVqFVrXrVs3Pfvss7roootUW1urtWvX6u677zY97vLLL9ctt9yS8H4AAJCzgt8THA45li41b7v2Wql7d2n48MQLdKTe6NHm5b17pU8/lU47zZp4ACAHJHxxu6efflpdunQJLQcL9cibZPSid+7c2VQ8p0NBQYHefvttPfrooxo5cqSKioqUn5+v3r1765ZbbtHq1as1YsSIqMdNmTJFy5cv1/Tp01VaWqpmzZqpTZs2GjdunJ5//nnNnj27wXMKYA2Xy6WRI0cyugG2QU4j6x08KF15pdSypdSnj7RokRwLF5rbnHqq8e+JJ8Z+Dgp0a/XoIQ0YYF5Xz8zNuYjPatgReW2thGZxD9q+fbsuuOACLVu2zHiSiHO/gk95yimn6JVXXlH37t2TEGr2qaqqUnFxsWlWPgAAcsLMmdIvflF/m3XrpH79pHfeMSZ9i/TZZ1LYRK+wwO23S3/4Q93ysGFGLzoAoMli1YvH1B1cWlqqTz/9VC+++KIuueQS9ejRQ82bN1fz5s3VvXt3XXzxxXrppZf06aef5mxxjvTyeDyaM2dOvZdNALIJOY2s9+yz9W+fMMEozqX4PeiRvbdIv3POMS+vXi3FufxRLuKzGnZEXlvrmHrQ0Tj0oKdPIBBQdXW1CgsLo0Z0ANmInEZWCwSMoe01NfHbfPSRFLzCSyBgDKfevr1u+3HHSV99ldo40bCvv5a6djWvKy+Xwk53zGV8VsOOyOv0SVoPOpCJCgoKrA4BSCpyGlknEJDee0/68Y/rLc4D/fvXFeeSMSP71VebG/34xykJEQnq1EkKu3ytJOP68wjhsxp2RF5bp8kF+pEjR7R48WK9+uqrmj17tj777LNkxAUkxOv1au7cufImcn1dIIOR08hKM2dK3/mO9Mgj9TYLnH569Mqf/1y68UZjYrh77pH+679SEyMS43RKpaXmdTt3WhNLBuKzGnZEXlsrocushVu+fLnuv/9+zZ07V0ePHg2tnzFjhoYOHarzzjtPBw8elCSNHj1a99xzT5ODBQAAGcrjkX73u0Y1DQwdGr0yP1969NEkB4WkaN9e2rixbnnPHutiAQCbO6Ye9IcfflinnnqqXnvtNdXW1ioQCJiuh+50OtWpUyctXLhQCxcu1B//+EcdPnw4aUEDAIAM8+9/S1VVjWoas0BH5mrf3rxMgQ4AKZNwgf73v/9dt956qzwejwKBgOm65+Euu+yy0P3Dhw+rrKysaZECAIDM9dprjWrmd7sVGDgwtbEguSjQASBtEirQd+/erR//+MehotzhcCjeJPBnnnmmWrVqFSre33vvvaZHCwAAMs9jjzV43nlQTdu20ZOOIbNRoANA2iRUoD/22GM6dOiQJIUK8xEjRsQs0t1ut0466aTQthUrVjQ1VgAAkGnefFO66aZGN989ZEgKg0FKUKADQNokVKDPnz9fkkJD2//1r3/p448/lqSYw9x79+4dar9p06amxgoAADKJ3y/deWejmwfy8rT5u99NYUBICQp0AEibhAr0jRs3hoa2jx07Vueee2697YuLi0P3Dxw4cEwBAo3hdrs1adIkud3HfGECIKOQ08gKr70mrVxpXjdpkvTQQ9Lpp0u33irt3i1df7101lnS88/rzB/9iLzONpEF+u7d1sSRgfishh2R19ZK6K8eXmT369evwfaVlZWh+36/P5GXAhJWU1OjwsJCq8MAkoacRsbyeKT//V/pjjvM6084QXrjDcnlkmbMqFv/+OPGv4GAaqqryetsE1mgV1RIgYAUY/RkLuKzGnZEXlsnoR70oqKi0P3djfj1dP369aH7rVu3TuSlgIR4vV4tWrRIXq/X6lCApCCnkTEOH5buu0+64grpww+NdbfcEl2cS9LddxvFeRzkdZZq29a87PNJBw9aE0uGIadhR+S1tRyBeNOwxzBkyBCtXLlSgUBArVq10tatW9WmTRs5nc7QOegzZszQgw8+qGXLlmn48OGh9aeeeqoWL16cmr3IUFVVVSouLlZlZaXpxw0AALLG7bdLf/iDcd/lkv7xDynsUqohAwdKK1ZIzoSv4IpMd+CA1KaNed22bVJpqSXhAIBdxKoXE/pf9IwzzghNEHfw4EF95zvf0cKFC01tDh06pFdeeUXf+973TJdhO/3005OzF0AMfr9fu3fv5lQK2AY5jYzg80lPPWVejlWct2tnFO4NFOfkdZYqKooezs7cQpLIadgTeW2thAr0yy+/PHTf4XDoiy++0Nlnny3JmKk9EAjob3/7my6++GLt2rXL9NgrrrgiCeECsfl8Pi1ZskQ+n8/qUICkIKeRET7/XNq7t/42Doe0dq108skNPh15naWcTqNID0eBLomchj2R19ZKqEA/9dRTNXnyZNN1zyNHyAcL9eDQdofDofPOO0+DBg1KQrgAACBt3n674TZPPBE9iRjsJ3IuIQp0AEiJhE8Ue/rpp9W7d+9QER7vJhnFeu/evfXXv/416YEDAIAUmzev4TacwpYbKNABIC0SLtDbtm2rjz/+WJMmTQr1lkf2qAdvEydO1OLFi1VSUpLUoAEAQIpt3CgtWVJ/m+JiqRGXXYUNUKADQFoc09Xn27Ztq7feektLly7VK6+8ok8++UR79uyRJHXo0EHDhw/XBRdcoNNOOy2pwQIAgDR5+umG2wwdyqztuYICHQDS4pgK9KARI0ZoxIgRyYoFAABkAp9PmjXLvG7GDOmDD6Tly+vW3XBDWsOChSjQASAt+NkbtuBwOFRYWBia/wDIduQ0LPXuu9KOHeZ1P/yhNHu2dNJJUkmJdNdd0sUXJ/S05HUWo0CPiZyGHZHX1mpSD3p5ebnKysq0fPlyVVRUyOFwqG3btho8eLDGjx+vbt26JStOoF5ut1vjxo2zOgwgachppM3Ro9JzzxnnnF90kbR5s3TrreY2Q4fWXUZt5UrJ7z+moe3kdRZr08a8TIEuiZyGPZHX1jqmAv2bb77RrbfeqldeeSXu9fFcLpcuuOACPfjgg+rSpUuTggQa4vf7tX37dpWWlsrJ+ZCwAXIaaXPhhdJbbxn3H3ggdpsf/tC8fIw5SV5nseJi8zIFuiRyGvZEXlsr4b/4559/rpNOOkkvvviivF6vadb28JvX69VLL72kk08+WcuWLUtF7ECI3+9XeXm5/H6/1aEASUFOIy3WrKkrzuNxOqXLLkvKy5HXWaxVK/PyoUPWxJFhyGnYEXltrYQK9L179+q73/2u9u7d2+B10B0OhwKBgPbu3atJkyZp7969qdoHQG63W6NGjZLb3aSzNoCMQU4jLT78sOE2gwZJbdsm5eXI6ywWWaAfPGhNHBmGnIYdkdfWSqhA/93vfhc61zw4aUC8HnRJoTYVFRX63e9+l+TQgTo+n0/r1q2Le8oFkG3IaaTF6tUNt0niJVPJ6yzWsqV5mR50SeQ07Im8tlZCBfrrr79ums0vEAhoxIgRuuuuu/T444/rscce01133aVTTz3VVKQHAgG9/vrryY0cCOP3+7V+/XqG4sA2yGmkxebNDbcZOTJpL0deZzF60GMip2FH5LW1Ehq3sH37dkkKDW9//PHHdd1110W1u/fee/X3v/9d1113XaigDz4WAABkiK++qn97mzbS1KnpiQWZjR50AEiLhHrQW33766nD4dCYMWNiFudB11xzjcaOHRvqSS8sLGxCmAAAIKn8/uge9MWLpVmzpI4dpd69pddfj77+NXJTZA96TY3E8FcASLqEetBPOukkLViwQA6HQwMGDGiw/QknnKCFCxfK4XDo5OD1UwEAQPr5/dLHHxszt7tc0rp1xjXQw/XqZQxpv+IKKeyUNiCqB12SDh+W6IABgKRKqECfPn26FixYIEn6qqFhcZI2h/0yf8011yQYGgAASJp77pHuvz/+9hYtpA4djPsU54gU2YMuGeehU6ADQFIlNMT9iiuu0IQJExQIBFRWVqa5c+fGbTtnzhzNnz9fDodDF154oS655JImBwsAAI7B119LM2fW3+akkyjMEV+sHnTOQweApEuoB/3DDz/UjBkztG7dOm3btk1Tp07VBRdcoIkTJ6q0tFQOh0Pbtm3T22+/rVdeeUWSNGDAAN1www36sJ5rrY4ePbppe4Gc53Q61b17dzmdCf3mBGQschpJNW+e5PXW3+bss1MeBnmdxfLzjVMjws87ZyZ3chq2RF5byxEIzuLWCE6nM+oya444v7bXt80UgMMhb0NfGrJUVVWViouLVVlZqaKiIqvDAQDkqquvlp56Kv72zp2Nc9PbtElfTMg+xcVSVVXd8qJF0hlnWBcPAGS5WPViwj+LBAKBqGucx7oFi/N428NvQFP5fD598cUX8jGjLGyCnEZSLV4cf9uPfyxt356W4py8znKR56EzxJ2chi2R19ZKaIi7pKhe8YZ6yevbTnGOZCooKLA6BCCpyGkkRUWFtH69ed0LL0i7dkknnyyNGZPWcMjrLBZ5HjpD3CWR07An8to6CRfoFNXIRC6XS/3797c6DCBpyGkkxaFDxrXMwxUUSBdcIOXlpT0c8jrL0YMehZyGHZHX1kqoQL/qqqtSFQfQJF6vV0uXLtWIESPkdif8uxOQcchpNMnrr0vXXy/t3h29bfhwS4pzibzOevSgRyGnYUfktbUS+os/Vd8EM4CFAoGA9uzZwwgP2AY5jWN26JB01VVSZWXs7SeemN54wpDXWS6yQKcHnZyGLZHX1mLufAAA7GTevPjFuST17Zu+WGAvFOgAkHIU6AAA2MmaNfVvp0DHsaJAB4CUo0AHAMBOvvqq/u0U6DhWFOgAkHJJKdCfeuopjRkzRiUlJSooKFDXrl01depUvfDCC8l4egAA0FgNFeg9e6YlDNgQBToApFzcSeIqKir0ox/9KLRcUFCgp59+2nRd80AgoIsuukivvvpqaFmSdu7cqTlz5mjOnDn629/+ptdee02tIi/NAQAAkq++Ar1HD4kZeXGsWrQwLx8+bE0cAGBjcXvQP/vsM7388st65ZVX9Morr8jhcJiKc0l68MEH9a9//UuBQECBQCDUxuFwhNYtWLBA1157bcp3BLnN5XJp8ODBcrlcVocCJAU5jWNy5Ij09dfxt3/3u+mLJQbyOsvRgx6FnIYdkdfWilugf/HFF5LqesWnTZtm2n706FHNnDnTVJSHCy/UX3rpJS1btizZsQMhTqdTPXr0kNPJtAqwB3Iax2TLluh1bdsa/3bqJP3iF2kNJxJ5neUo0KOQ07Aj8tpaDRbokjG8/ayzzjJtnzdvnvbt2ydJod7yyFu45557LplxAyZer1fvv/++vF6v1aEASUFO45hEDm9v317avVtavVratk3q3t2auL5FXmc5CvQo5DTsiLy2VtwCffPmzZKMnvBBgwYpLy/PtP2dd96JekyfPn300UcfacOGDbryyitDw94l6ZNPPklm3ICJ0+nUwIED+aUPtkFOIyEbNkjnny9Nnmxe36uX5HRKJ54oRfw/bgXyOstFFuicg05Ow5bIa2vF/asHe8clo/CO9O9//9u07HA49PDDD2vkyJHq3bu3/va3v6lDhw6SjB72jRs3JitmIIrT6VSHDh34IIFtkNNotEBAuuQS6bXXorf16pX2cOpDXme5yEni6EEnp2FL5LW14v7V9+/fH+r9LioqMm07cuSI1qxZYzrvvKioSBMmTAgtu91ujRkzJjTUvbKyMqmBA+E8Ho/mzJkjj8djdShAUpDTaLSvv5bCTkszOfXU9MbSAPI6yzHEPQo5DTsir60Vt0A/ePBg6H5VVZVp27Jly+Tz+SQpNIx91KhRUb+ytG/fPnTf7/cnJWAgHs6Tgd2Q02iUTZvibxs3Ln1xNBJ5ncUo0GMip2FH5LV14hbohYWFkowCfO3ataZt7777blT7kSNHRq2rrq4O3W8Z+aEOAACaLt4pZH36SAMHpjcW2Fvkd7kjR6RvO2wAAMkRt0Dv1q1b6P7nn38eKsr379+vv/3tb1GXVRs9enTUc2zfvj10v2PHjk0OFgAARIjXg37zzVLE/9VAk0Segy5JNTXpjwMAbCxugX7qqaeGhq8HAgFNmjRJQ4YMUd++fVVeXm5qW1hYGNWD7vf79dlnn4Wuh967d+/U7AEAALksVoF+883GDUimWKMhGeYOAEkVt0D/wQ9+ELrvcDjk9Xq1YsUK7d27N7Q+WMBfdtllUZdh+/e//206j/2kk05KZtwAAECKHuL+5z9Lf/qT5HZbEw/siwIdAFIuboE+ZswYTZw4MTQLe7AnPHgLatGihX75y19GPf6ZZ56RpNDjY52jDgAAmiAQiC7QGbGGVCkoiF5HgQ4ASeUIBCvoGPbv36+JEydq6dKlRuOwwjwQCCg/P1/PP/+8zjvvPNPjdu/ereOOO05HjhxRIBBQXl6e9uzZE3W5NrurqqpScXGxKisrc27f0y0QCKi6ulqFhYVR8yMA2YicRqPs3Su1a2det3Fjxhbp5LUNtGhhPu98yRLptNOsi8di5DTsiLxOn1j1Yr3j39q0aaOPPvpIf/3rX/XCCy9o1apVOnjwoNq3b69x48bpZz/7mQbGmCH2lVdeUa9evULLQ4cOpUBFyhXE+mUfyGLkNBoUcZUV5eVJ3btbE0sjkddZrmVLc4F++LB1sWQIchp2RF5bJ+4Q9yCXy6Ubb7xRCxcu1N69e1VbW6sdO3bomWeeiVmcS9JNN92kVatWhW6zZs1KeuBAOK/Xq7lz53LNRtgGOY1GWbnSvHzCCUaRnqHIaxvgWugm5DTsiLy2VoMFOpAN3G63Jk2aJDeTIsEmyGk0SmSBPmiQNXE0EnltAxToJuQ07Ii8thYFOmyjhmuxwmbIaTQoywp0ibzOehToUchp2BF5bR0KdNiC1+vVggULGIoD2yCn0SC/X1q1yrwuwwt08toGWrQwL+d4gU5Ow47Ia2tRoAMAkI2++iq6ODr5ZGtiQe6I7EFnkjgASCoKdAAAstG3l0ANad9e6tjRmliQOxjiDgApRYEOAEA2+vhj8/Kpp0pcrxap1qqVebm62po4AMCmKNABAMhGS5aYl0eOtCYO5JbWrc3LBw5YEQUA2BYFOgAA2cbni57B/bTTrIkFuaWkxLy8b581cQCATVGgwza4ViPshpxGXNu2SUePmtcNHGhNLAkir7Ncmzbm5f37rYkjg5DTsCPy2jqOQCAQsDoIu6qqqlJxcbEqKytVVFRkdTgAALt45x1pwoS65aIiY6gx56Aj1Z5/Xpo2rW55wABpzRrr4gGALBarXqQHHbbg9/u1e/du+f1+q0MBkoKcRr127TIvd++eFcU5eW0D9KCbkNOwI/LaWhTosAW/36/Vq1fzQQLbIKdRr8iiKPK84AxFXttAZK5RoJPTsB3y2lqcXABbcLvdGjdunNVhAElDTqNekRNzRfZqZijy2gYic+3IEammRioosCYei5HTsCPy2lr0oMMW/H6/tm7dyi99sA1yGvXK4h508jrLxcq1HO5FJ6dhR+S1tSjQYQs+n0/Lly+Xz+ezOhQgKchp1CuyIMqSHnTy2gYir4Mu5fSl1shp2BF5bS0KdAAAsk2WFuiwAZdLKi42r8vhAh0Ako0CHQCAbEOBDiu1b29e/uYba+IAABuiQAcAINtQoMNK3bqZl3fssCYOALChjC7Qy8vL9Ze//EUXX3yxBg4cqHbt2qlZs2bq2LGjJk2apFdffTXm43w+nx5//HGdccYZatOmjQoKCtSnTx/NmDFDO3fujPt6X375pa655hr17NlT+fn5ateuncaPH68XX3wxVbsIAEDisnSSONhEZIG+fbs1cQCADWX0ZdZmz56tn//851Hrd+/erXnz5mnevHm64YYb9Nhjj4W2HTlyROeee67KyspMj9m4caMeeeQR/eMf/9D8+fM1bNgw0/a5c+fqwgsv1JEjR0Lr9u7dq3fffVfvvvuu5s6dq6eeekoOhyPJewkAQILoQYeVSkvNyxToAJA0Gd2DHtStWzddf/31+vWvf60rrrhCbnfd7wqPP/643n333dDynXfeGSrOXS6XrrvuOt19993q3r27JGnfvn266KKLdOjQodBjysvLNW3atFBxPmDAAN1333269NJLQ21mzZqlv/zlLyndTxw7h8Oh9u3b8wMKbIOcRly1tcZ1p8NlSYFOXtsEBXoIOQ07Iq+t5QgEAgGrg4jn+eeflyRdfPHFcrlcofX/+Mc/dMUVV4SWf/KTn+iPf/yj9u/fry5duoQK7V/84hd64IEHJEnr16/XCSecoODuPvroo7rxxhslSXfccYf+53/+R5JUWFioLVu2qOTb4YI/+MEP9Nxzz0mSunbtqq1bt5piqU9VVZWKi4tVWVmpoqKiY/47AAAQsmuX1KmTed3u3dETdwGp8tZb0pQpdctdukjl5dbFAwBZKla9mNE96Jdddpkuu+yyqIL4vPPOMy0fPXpUklRWVmYaon7hhReG7vfr108DBw4MLb/xxhsx748dOzZUnEc+R3l5uZYtW3aMe4NU8vl8WrduHddrhG2Q04jrwIHodZGXvcpQ5LVNRJ6DvnOn5PFYE4vFyGnYEXltrYwu0ONZv369aXn48OGSpJUrV5rW9+rVK+5ysG1tba3p+ep7TKzXQOaoiRzyCWQ5choxVVaalwsKpGbNrInlGJDXNhA5xD0QkL7+2ppYMgA5DTsir62T0ZPExXLo0CH96Ec/Ci337dtXF198sSRjUrdwkcPKCwsLQ/crKiokSfv371f4KP/6HhP+uFhqa2tVW1sbWq6qqpIkeTweeWL8sux0OuVyuUK/TrlcLnm9XsU768DlcsnpdMrr9crpdMrpdMZ83qDgufper9d0P568vDz5/X75/X653W75/f64v5w5HA653W5T7D6fT36/P2b74L6Gx96YffV4PI2K3e12a/DgwfJ6vXK5XI2KPXxfGxM7xyn+viZynIJtgvvBcYp9nCRp4MCBoeeIta8cp/pjt+v7yVFRYfrPO1BcLIeUNcdp4MCBcjqdCgQCtj5OQbZ8PxUWyl1QIEfYF3jv5s1y9+iRc8cpEAhoyJAh8vl8cf+WfO5Zf5wy+v0Uh9XHKfw7CMcptccpKoa4r5aB9uzZo6lTp2rp0qWSpI4dO+rNN99U8+bNJSnqwNS3HJz0IJHHhD8ulpkzZ+ree++NWl9WVqYWLVpEre/evbuGDBmilStXqqCgQP3799fSpUu1Z8+emM8/ePBg9ejRQx9++KEGDhyoDh06qKysLG7SnHXWWSooKNDcuXM1adIk1dTUaMGCBTHbut1uTZ48WRUVFVq9erXGjRun7du3a/ny5THbt2/fXqNGjdKGDRtUU1MT2o9t27bFbN+vX7/Q/nXt2jW0H9XV1THbjxw5MrR/Z555Zmg/4jnnnHO0YsUKVVRUhPZjyZIlMdsWFhaG9q+8vDy0H5EjM4I4Tsk7TsH9W7RoEccpTKzjtGLFCm2PM/ESxylzjpMV76cu//63hoctH3K71UrKquM0ZswYtWzZ0tbHKciu76ez27RRq7ACfdWcORoydmxOHqeCggLl5+drw4YNMdvzuZcZxymT30+ROE65c5xWr14d1S6jJ4kLt2HDBk2cOFGbNm2SJJWWlqqsrEz9+/cPtfnFL36hmTNnhpb379+v1q1bh5anTp2qN998U5LUpUsXlZeXq7a2VgUFBaFCfMaMGXrooYdCj/n88891yimnhJafeOIJXXfddTFjjNWDXlpaqoqKipiTxNnxFyCrflENBAKaN2+exo8frxYtWvBLXcS+Zspx4hfVxh+nI0eOaP78+Ro/frzy8vJi7ivHqf7Y7fp+cvz973LfdFNo2T9ihJyffJIVx8nj8eidd97RxIkTlZeXZ+vjFGTX95Nr8mQ533kn1NZ3991y3Xtvzh2n2tpalZWV6Zxzzok7iTCfe9Yfp0x/P8Vi5XEKflYHv4NwnFJ3nPbv36+SkhLTJHFZ0YP+0Ucf6dxzzw0NYR88eLDeeustde3a1dRu0KBBpuVNmzaZiutgcR/eNj8/X3379g39ShPeJtZy5GuEy8/PV35+ftT6vLy8qC/Y4cI/0IOJUJ/wNvU9b6w2DbUPJm7k/XjCY3e5XA3OcB8ee2P2tbGxB99owTaNiT28TWNi5zjFl0js4W04TmaRxyn4GvFeh+MUn63fTxE9HM5vL7GWTcfJ4XDI4XDY+zjFaZ9NxylWm9D9vn2lsALd9dVXUbHnwnEKxuByuRp8fj734sv591McVh+nyO8gHKfYkvF9z/R8DUZnsZdeeknf+c53QsX5pEmTtGjRoqjiXJImTJhgKpBffvnl0P01a9Zo7dq1oeWpU6eG7k8Ju1TIwoULTeeyv/jii6H7Xbp00bBhw5q4RwAANEHkLO5hI8WAtOnb17wcZ3g3ACAxGd2D/tJLL+mSSy4JDVno0KGDRo8erccee8zUrrS0VJdccolKSkp00003hYao//73v9e+ffvUqVMnPfnkk6H23bt3N11HfcaMGXr88cdVXV2tgwcPavTo0br00ku1Zs0aU5F/xx13NPhrDgAAKRU5i3uWXGINNtOnj3n5yy+tiQMAbCajC/Q1a9aYzifYvXu3/vu//zuq3ZgxY3TJJZdIkn7zm99o1apVeu+99+Tz+fTEE0+Y2rZu3VovvfSSWrVqFVrXrVs3Pfvss7roootUW1urtWvX6u677zY97vLLL9ctt9ySzN0DACBx9KAjE0T2oO/fL+3eLXXoYE08AGATGT/EPVEFBQV6++239eijj2rkyJEqKipSfn6+evfurVtuuUWrV6/WiBEjoh43ZcoULV++XNOnT1dpaamaNWumNm3aaNy4cXr++ec1e/bsBs8nAAAg5ehBRybo2VOKvELN559bEgoA2EnWzOKejaqqqlRcXGyalQ+p4fP5tGHDBvXp04fTEGAL5DTiOuMM6aOP6pb/9Cfp5putiycB5LXNRObi/fdLd95pXTwWIKdhR+R1+sSqF+kShi24XC7179+fDxHYBjmNuCoqzMvt2lkTxzEgr20m7Eo5kqTPPrMmDguR07Aj8tpaFOiwBa/Xq8WLF9d7nUIgm5DTiGv3bvNyFp3zS17bTOSVbZYtsyYOC5HTsCPy2loU6LAFp9Oprl27Mk8AbIOcRkwejzEZV7gsKtDJa5uJLNB37JB27bImFouQ07Aj8tpa/NVhC06nUz169OCDBLZBTiOmyOHtUtYV6OS1jfTtK7VsaV6XY73o5DTsiLy2Fn912ILX69X777/PUBzYBjmNmCKHtzscUkmJNbEcA/LaZlwuaehQ87pPPrEmFouQ07Aj8tpaFOiwhUAgoOrqanFRAtgFOY2YIgv0du2MIilLkNc2FHnp2gULrInDIuQ07Ii8thYFOgAA2SKLJ4iDTZ19tnl5yRLp4EFrYgEAG6BABwAgW+zZY15u396aOICgM8+U3O66Za9X+vBD6+IBgCxHgQ4AQLbYudO8TA86rNaqlTRypHldWZk1sQCADVCgAwCQLcrLzcvdulkTBxDuO98xL7/xhsS5qwBwTCjQAQDIFpEFeteu1sQBhJs61by8ebO0cqU1sQBAlqNAhy24XC6NHDlSriyazRioDzmNmHbsMC9nWQ86eW1TJ58s9ehhXvfaa5aEkm7kNOyIvLYWBTpswel0qkOHDnI6SWnYAzmNKIFA1vegk9c25XBI559vXvfqq9bEkmbkNOyIvLYWf3XYgsfj0Zw5c+TxeKwOBUgKchpRDhyQamrM67KsB528trHzzjMvr1ghrVljSSjpRE7Djshra1GgwxbcbrfOPPNMucMv9QJkMXIaUbZvj17XuXP642gC8trGTj9d6tjRvO7vf7cmljQip2FH5LW1KNBhGwUFBVaHACQVOQ2TyEm3unSRmjWzJpYmIK9tyu2Wpk83r3vmGam21pJw0omchh2R19ahQIcteL1ezZ07V16v1+pQgKQgpxHlk0/My8OHWxNHE5DXNnfNNeblvXttP1kcOQ07Iq+tRYEOAEA2iCzQR4ywJg4gnj59pLFjzesee8ySUAAgW1GgAwCQ6WprpeXLzetOPdWSUIB6XXedeXnhwugflwAAcVGgAwCQ6ZYvl8Jn03U4pGHDLAsHiOuCC6InL/zNb6yJBQCyEAU6AACZLrIHsn9/qbjYmliA+jRvLt12m3ndG29Iq1ZZEw8AZBkKdAAAMt3SpeZlhrcjk91wg1RSYl53993WxAIAWYYCHQCATMcEccgmrVpJM2aY1732mvT++5aEAwDZxBEIBAJWB2FXVVVVKi4uVmVlpYqKiqwOx9YCgYC8Xq/cbrccDofV4QBNRk4jZPNmqVcv87ply6ShQ62JpwnI6xxy4IAxq3tFRd26k06SPv/cuGa6TZDTsCPyOn1i1Yv0oMM2ampqrA4BSCpyGpKkP/3JvNy2rTRokDWxJAF5nSNat5YeeMC8btUq6YknLAknlchp2BF5bR0KdNiC1+vVokWL5PV6rQ4FSApyGpIkv1967jnzuksvzdoeSPI6x1xzjXTyyeZ1d9whffWVNfGkADkNOyKvrcUQ9xRiiDsAoEkWL5ZOP928bt06qV8/a+IBErVwoXTWWeZ1p59urM/SH5oAIFkY4g7b8vv92r17t/x+v9WhAElBTkOS9Mor5uWBA7O6OCevc9DYsdLVV5vXffSR9LvfWRJOspHTsCPy2loU6LAFn8+nJUuWyOfzWR0KkBTkNLRnj/TMM+Z1F1xgTSxJQl7nqIceip7o8J57pM8+syKapCKnYUfktbUo0AEAyEQzZ5pnwJakiy6yJhagKQoLpX/8Q3KGfe30eqXLLpP27bMuLgDIQBToAABkmupq6e9/N68791xjiDuQjUaOlO6807xu40bp+9+Xjh61JiYAyEAU6AAAZJo//UmqqqpbdjikBx+0Lh4gGe68UxoxwrxuwQLpppsk5iwGAEkU6AAAZJaPPpLuusu8burU6HN4gWyTl2dMfNi5s3n9k09KN95oXFYQAHIcBToAAJkiEJBuvVWKnJjn9tutiQdItm7dpDfekAoKzOufeMKY7Z1JqQDkOAp02ILD4VBhYaEcDofVoQBJQU7nqP/7P+nTT83r7ror+lroWYq8hiRp2DDpueckl8u8ftYs6fLLJY/HmriOATkNOyKvreUIBDjpJ1ViXXgeAICY3nlHmjDBvO6446Qvv5TcbmtiAlLp1VelSy6JLsjPP1964QWpWTNr4gKANIlVL9KDDlvw+/3aunWr/Jy/Bpsgp3PM7t3S9ddHr7//flsV5+Q1TM4/3yjS8/PN6199VbrgAqmmxpq4EkBOw47Ia2tRoMMW/H6/ysvL+SCBbZDTOWT/fumMM6QtW8zr77xT+sEPLAkpVchrRJk8WXrzzehz0ufMkc48U9q61Zq4Gomchh2R19ZiiHsKMcQdAFCvgweliy6S3n7bvH7oUONcdCe/oyNHfPCBUawfOmReX1JinJv+ve9ZExcApBBD3GFbPp9P69atk4/ZX2ET5HQOOHJEOvvs6OK8Wzfp+edtWZyT14hrzBiprEyK7NDYt0+aMkW67jqputqa2OpBTsOOyGtr2e9/f+Qkv9+v9evXMxQHtkFO29z27UZBsnSpeX2rVtLChVLfvpaElWrkNeo1apS0ZInUp0/0tr/9TTr5ZGnRovTHVQ9yGnZEXluLAh0AgHRat8445zyyOG/Z0pi5undva+ICMsGAAcbpHeefH71t82bjh6077pBqa9MfGwCkAQU6AADp8txzRi/gtm3m9c2b152DC+S64mLplVekv/7VGFUSLhCQ/ud/pCFDpPfftyY+AEghCnQAAFKtqkq6/HJjVvajR83bOnc2zkM/5RRrYgMykcMhXXuttGKFMeIk0n/+Y8zhcPHFGT/TOwAkggIdAIBUevNNafBg6dlno7f17Cl98okxbBdAtF69jHkZfvc7qVmz6O0vvST16yfddptUUZH28AAg2SjQAQBIhW3bpCuukKZONc6djXTZZdLnn0ulpemPDcgmLpf0s58Z56YPHRq9vbZWevBBo5j/1a+kAwfSHiIAJAsFOmzB6XSqe/fuctrwskTITeR0Fquulh54QDrxROkf/4je3ry59NvfGtvatEl/fBYir9EkgwYZkys+9phxffRI1dXSffcZI1N+9Stpz56Uh0ROw47Ia2s5AoFAwOog7CrWhecBADZVW2tMavW730k7dsRuc8IJ0osvSgMHpjc2wG727jWK8b/8RfJ6Y7dp3twYxfKTn0j9+6c3PgBohFj1Ij+LwBZ8Pp+++OIL+Xw+q0MBkoKcziJHj0r/+79G8f1f/xW7OM/Lk2bOlFatyuninLxG0rRtKz38sLR+vVGEOxzRbY4cMX40O+EE6bvflV59NX4xf4zIadgReW0tCnTYRkFBgdUhAElFTme4PXukX/xC6tLF6KGLdZ65ZJyDvmGD9N//bZxLm+PIayRVr17SM88YP35dfHHsQl2S5s+XLrhA6tHDGP7+1VdJC4Gchh2R19ZhiHsKMcQdAGzG7zdmlH78cenll43leIYOlf74R2OG9nhFA4DkWr1a+sMfpOeekzye+tuecYZ05ZVGYV9cnJ74ACAMQ9xhW16vV4sXL5Y3yUPXAKuQ0xlm507p3nuNid/OPts4jzxecT5ggPTaa8ZkVmPHUpyHIa+RcgMHSk8/bVwb/Ze/rH8ixn//W7r+eqlDB2Oky+zZUlVVQi9HTsOOyGtrUaDDFgKBgPbs2SMGhMAuyOkMsHOncf7q6acbw9jvuUdaty5++6FDpTlzpJUrpXPPZTh7DOQ10qZzZ+nXvzbmhHjqKWnkyPhtjx6V3nzT6E3v2NEo1v/2N+mbbxp8GXIadkReW8ttdQAAAGSMbdukt96SXnlF+vDDhieUcrulyZONnrphw+gtBzJNixbS9OnGbcUK6YknpBdekPbti93+yBGjWH/zTeP9fNpp0qRJxiRzQ4dKXHYKQIpRoAMAcpfHY5yz+uKL0nvvSZ9+2rjH9ewpXX65dPPNUqdOKQ0RQJKcfLL05z8bV12YO1eaNcsY9RLvXPVAQFqyxLjddZfRuz5+vHGay3e+I3Xrlt74AeQECnQAQO4IBIzZ1t9/X1qwwPiSfuBA4x6blyd9//vGMNjvfMfoPQeQfZo1k847z7gdOCC98YbxI938+fWPmtm1S/rHP4ybJPXvL+fo0eraqpU0eLAxQzwANBHfLgAA9hUIGOeNL1tmfPleskTatKnxj8/LM4a2XnCBMdNzixapixVA+rVubfzoduWV0v79xo92b7xh/HvwYP2PXbdOrnXrNEySHnxQOv54adQo43bGGcb11xkSDyBBFOgAAPuorZU++8wYqr5ggfTFF9L27Yk9R+vWxsRwP/iB0VPevn1KQgWQYdq0Md73P/iBcS76ggXGD3vz5klfftnw4zduNG7PPGMsFxVJw4dLp55q3IYNMyacBIB6cB30FOI66Onj9/u1fft2lZaWysmv1bABcroRfD7p88+ltWulRYuM2dM/+8zoNU9U9+7S+edLZ51l9Jjn5yc/XpDXyF4bN0plZcbpMe+/b/S2H4tOnYxC/ZRTjGHxwaHxTDCJDMJndfrEqhcp0FOIAh0AkmT/fqMAX7lSWrVK+uQTo0fryJFje77WraXRo6UJE6RzzjGGpgJAYwR/HPzgA+O2aJFUWXnsz9emjTRokHTSScZt0CBpwACjBx6ArVGgpxkFevp4vV59+OGHGj16tNxM3AQbyNmcPnxYWr5c+uorozd80ybj3127jq1nPKhjR2nIEGniRGnECGO4KT1WaZezeQ3b8nq9+nDBAo1u3VrupUuljz6S/v3vxE+tiaW0VBo40CjW+/c3zmk/4QSppKTpzw3Ug8/q9KFATzMK9PTx+/2qqKhQu3btGIoDW7B1Tvv9xnDRbduM3vCvvpL+8x/j9vXXyXmNE04whpCedZZRmJ98MpM1ZQBb5zVyUtycLi835sL45BNjcsrPP5eqq5Pzou3aSX37Sv36Gbfjj6+7tWyZnNdATuOzOn0o0NOMAh1AzjpyxOj93rrV+HfDBuP+mjXGF9djHZoeS69eRg/T6acbxfhpp0nFxcl7fgBoquAPk599ZtxWrDAmsTzWc9nj6dRJ6t277nbccVLPnsbnZOfO/FAJZBgK9DSjQE8fj8ejsrIyTZgwQXl5eVaHAzRZRud0IGBcfmjHDqMX/KuvjKL7yy+lnTul9eulvXuNL6TJlJ9vfNkcPtzoNTr9dOPfzp2T+zpImYzOa+AYNCmnAwHjh8vg3BorVxqF+8aNxnnuyZafbwyb79nT+Czt3t1Y7tHDWO7c2bhGPHIen9XpE6te5KQC2IbX67U6BCCpLMnpQECqqjKGmn/9tfHlcfduoxc8+O833xgFeCr17Wv0+AwdahThgwYZ67gOedbjsxp2c8w57XAYxXLPntLUqXXra2uNHzxXrzZGHa1bZ5wCtGGD5PEce6C1tXWXgounpETq2lXq1i32rUsXY4QSc3jYHp/V1qFAB4BcEOz1/vprY8K1nTvrbps3GwX31q3Snj1GgZ4OhYVSnz7GeZMDBxo9OMFLDhUWpicGAMg0+fl1M7qH83ikLVuM4n39eqNwDxbcyZiUTpL27TNuq1bVH1+nTkaPe+fORtEe/m/HjlL79saNS1YCCaNAB4BsVVtrFNa7d0sVFUbhvWePcfvmG/O/O3ca7dOtdWtj9uGuXaUTTzR6YE480egx6tIl/fEAQLbKyzN+1OzTR5o82bzt8GFjhNPmzca/Gzca9zdvNor6ZM77UVtr/KC7dWvDbYuLpQ4djFvHjnX3O3SoK+KDt7ZtJWYMByjQASAjHDpk9Frs3SsdOCDHzp3qsWiRnMuXGz3aFRXGbe9eo+Deu7dp191NlvbtjS9dffsaBffxxxvnNR53nDFEnfk3ACD1WrSI3esuGfOBfPNNXVG9ZYtRuG/fbswjsnmzUeCnQmWlcduwoeG2DodxTfhgwd6unbFcUmLc2raNfWvePDWxAxahQAeAZPD5jEK6sjJUZKuqqm64YPBLSkWFMWtvcHn/fuMW0bvtljTYiv0I17at8SXpuOOM4YzBCYW6dDGK706dmC0dADKd02l8bnfpIo0cGb09EDD+n/rmG2O0VXm5MQnojh1GER+8n+q5R4Jx7NtnDOFvrBYtjEK+uNi4tWlT/61167r2rVoxsz0yDgU6gNzm9xu91wcPGteoraoyCubqavMtWGRXVRm36uq64rqy0niObNGypTHkvEOHusmAOnUy/u3QwRh+3q4dvd8AkAscjrre6BNPjN+upsY4leqbb4zb11/XzWUSfn/PnuRfxaM+hw8bt/LyY3t8q1ZG0R4s8IO3WOtatTL+Dy0qMuZKCf5LoY8k4jJrKcRl1tInEAiourpahYWFcjCzqH0FAtLRo0YxfOiQ0UsdvB+8BYvsYNEdXFdZaSwHb9XVxuMPHrR6r5rO5TK+SHTsaBTWnTrV/Rs87y94v3NnqaDA6oiRo/isht2Q0zH4/caP13v2GAX97t3GLfJ+cM6UAwesjjg5WrWKLtzDC/iWLeuK++JiY33LlnXbWrSou7VsafxfbVHRT16nD5dZg60VUHRYz+83fsUOFsZHjxq3mpq6ojhYINfUGJPW1NYa/wYL6fDboUN1v4wH76fi2rCZxOmUWrdWoG1bBdq0kaN9ezlKSoyh5sF/g0PPg+folZQYRTqQBfisht2Q0xGczroe+f79G27v8RinfwUL9uBt3z6j0A/OzxJ+O3DA+NE+kwS/3yRTsFgPL/Ajb+EFfkGBcWvZ0vgBoLCwbl1BgflHgAZ+ACCvrUOBDlvwer2aO3euJk2apLy8PKvDsV4gYPyHFyxua2okr9dYV1trLngPHzaKaI/H3Dsd3H7kiPHY8G3BArympu6xweeCMQttmzZ1v5K3a1c3VK5NG2M5OFyuqKhue9u2xjqXS16Ph5yG7fBZDbshp5MgL6/ukm2N5fOZi/cDB8y34ClosW6ZMMFqYwW/W+3Zk5rnz883CvXmzU2Fe6CgQPuqq9W+Wzc5CgqMds2b17UNv1/fuljbmjenU6EBDHFPIYa4p08gEJDX65Xb7bZmKE6wIK6pqStaa2vrepBjLYevO3Ik+rHBW/hy+GNrauqK78OHje1er3GrqbF/T3Oq5OXVFdfBX58LC41e6tatzUPWiovriupgsR08R62JeWh5TgMpQF7DbsjpLBSc1DV4Slxw0tbw24EDsdeHz1lTU2P1nmSvvDyj6G/WzPwjQUGBsa5ZM3NhH2wbvr55c+N5Ip8jL6/u+YPtgo8Ntg1uy8szOlWaNWvy97ZjxRB3ZL5AwCgwa2uNgtfnM27BIvboUWO7z1fX7sgRyeORp7pa7mbN6trW1ta1C/Ycf9s2VMgG1wWfN9hTHHx8ZEEd7GWOXOfxWP2Xy13B4V/B4V3Bwjk45KtVK+MWPN8ruNyyZV2vdvj6/Hyr9yikpqZGhYWFVocBJBV5Dbshp7OMy1U3o3tTeL11p+SFF/zBf8PvR86TE5wXJ3zUYsTVXGwtE787hxfv4T8INOYW/KEg/H74usj14fe93qhQKNCzQSBgnNsbLDaDt/Bln68u2cPbJHoLPkf4c4U/57HeD/YAhxfdwaI5sug+hkEdDkktkv+XRzI4HMavlMGe6PACOfghGDw3KrzHOtg2WIDH+rew0LbDpLxerxYsWMCwSdgKeQ27IadzWPB0tqYW+kF+v9ErHzn5bfiphQ2tC47IDJ8UNzjSMtMK4kwT7HirrrY6Egr0tJg4sa5nOLKADhalkcV25H0gWfLyzD3OLVoYRXJwiE/4tpYtzcOFWrQwT1QSHHYU3BbeYx18XpsW0AAAAEnjdNZ9v0oFn6/unPbgXEThp1gGb4cPy1ddrf8sX64TjjtOrvBRqMH2kffj/XvkSGr2xeYo0NNh8WKrI4CVwoe4RA6ZCRa3+fl1M2qGD62JNdQm+JjgbJzB3ufwc2nCJ/to0aLu/BuXy7JzbAAAAGARl6tuhGID/B6PNs2dq36TJsnVlJEhgYBR3EcW9ZFzLoUX9bHWB08xDZ6CGmwbPho3vK3HU9c2+DxZ1OFJgY7s43QaHzLBQjQ/X4G8PB0+elQtCgvlCC9ogwVrWFs1a2Ysu1zmySOC7YLFb7zzT+o7pyR8lsrgOouuYQkAAABYJniaY/PmVkdinucqfF6qYJEfOSFzvMmdgz8WBO9HLkfOWxX5b/j8VcHHlZebQqVAj+HLL7/U7373O7333nvauXOnCgsLNWTIEF133XW6+OKLrQ6vYU6nuTCNdwsWuZHrIicwCC9cE7kffgsWzXl5xmu4XOYZHMPjidU2OGtjnFkWvR6P3uUyJwAAAAAiORx19U2rVlZHU6eqypiwOAwFeoS5c+fqwgsv1JGwcyb27t2rd999V++++67mzp2rp556KrFLafzhD8ZwkmDxGiw8I4vVYIEaXjg3dD/832DS0WMLAAAAAFmHAj1MeXm5pk2bFirOBwwYoEsvvVRr167VCy+8IEmaNWuWhg8frptvvrnxT3zddcb1kZFSbjfpDHshp2FH5DXshpyGHZHX1nEEAsdwTSubuuOOO/Q///M/kqTCwkJt2bJFJSUlkqQf/OAHeu655yRJXbt21datW+VqYHbqWBeeBwAAAAAgVr3IWOgwb7zxRuj+2LFjQ8W5JF144YWh++Xl5Vq2bFlaY0P9/H6/du/eLb/fb3UoQFKQ07Aj8hp2Q07DjshrazF24Vu1tbVav359aLlXr16m7ZHLK1eu1IgRI6Keo7a2NrRcVVUlSfJ4PPJ4PFGv6XQ65XK55PP5JEkul0ter1fxBjW4XC45nU55vV45nU45nc6YzxsUHJri9XpN9+PJy8uT3++X3++X2+2W3+8PxRbJ4XDI7XabYvf5fHHfyMF9DY+9Mfvq8XgaFbskrVq1SqNGjVJBQUGjYg/f18bEznGKv6+NPU7hbYL7wXGKfZw8Hk8opyOHmXGcMuc48X4yx97QcfJ6vVq1apVGjx4th8PBcYoTu9XHKVbsHKfo2P1+v44eParVq1fr9NNPlzPOHEAcJ+uPE++n2Psa7zgFP6uD30E4Tqk9TlExxH21HLN//37TgY0ckl4Ycc3AioqKqOeYOXOm7r333qj1ZWVlatGiRdT67t27a8iQIVq5cqUKCgrUv39/LV26VHv27IkZ4+DBg9WjRw99+OGHGjhwoDp06KCysrK4SXPWWWepoKBAc7+d3bympkYLFiyI2dbtdmvy5MmqqKjQ6tWrNW7cOG3fvl3Lly+P2b59+/YaNWqUNmzYoJqamtB+bNu2LWb7fv36hfava9euof2orq6O2X7kyJGh/TvzzDND+xHPpEmTNHz4cL3//vuh/ViyZEnMtoWFhaH9Ky8vD+1H+A804ThOyT1ONTU1WrRoEccpTKzjtHbtWh08eFBlZWVR7TlOmXOceD8ZEj1ONTU1HKcYMu048X5q3HEaN26c1q1bx3FSZh8n3k91Gnucgt9BOE6pO06rV6+Oasc56N/auXOnunTpElq+8847df/994eWN27cqD59+oSWf/vb3+qOO+4wPUesHvTS0lJVVFTEPAfdjr8AWfWLqtPp1Pbt29W5c2fl5+fzS13EvmbKceIX1cR60Ldv366uXbtG9cpwnDLnOPF+Msfe0HHy+/0qLy9Xjx49Qu05TtGxW32cYsXOcYqO3e/3y+v1Rn2HjBc7xyn+vvJ+imblcQp+Vge/g3CcUnec9u/fr5KSEtM56PSgf6ukpEQOhyN0cCN/QQoOVw9vHyk/P1/5+flR6/Py8uq9Nnf4ZHORQ1ljCW/TmGt+h7dpqH0wcSPvxxMeu8vlanDivPDYG7OvjY3d4/FoxYoV6tq1q6TGxR7epjGxc5ziSyT28DYcJ7PIfVu1apVKS0vjvg7HKT7eT7FZfZyCp26UlpbK5XJxnOKw+jhF4jjF5nQ65XA4tHz5cnXp0qXB5+c4xcf7KTarjlP4Z3W8eDlOdZp6nKKer8HockR+fr769u0bWt60aZNpe+TyoEGD0hIXAAAAACA3UKCHmTJlSuj+woULtXfv3tDyiy++GLrfpUsXDRs2LK2xAQAAAADsjQI9zIwZM0KTwR08eFCjR4/W/fffr0svvVQvv/xyqN0dd9zR4LALAAAAAAASwTnoYbp166Znn31WF110kWpra7V27VrdfffdpjaXX365brnlFosiBAAAAADYFT3oEaZMmaLly5dr+vTpKi0tVbNmzdSmTRuNGzdOzz//vGbPnt3gif8AAAAAACSKHvQY+vfvr6eeesrqMJAAh8Oh9u3by+FwWB0KkBTkNOyIvIbdkNOwI/LaWlwHPYWqqqpUXFxsuq4dAAAAAACx6kXGasMWfD6f1q1bJ5/PZ3UoQFKQ07Aj8hp2Q07Djshra1GgwzZqamqsDgFIKnIadkRew27IadgReW0dhrinEEPcAQAAAACxMMQdtuXz+fTFF18wFAe2QU7Djshr2A05DTsir61FgQ5b8Pv92rZtm/x+v9WhAElBTsOOyGvYDTkNOyKvrUWBDgAAAABABqBABwAAAAAgA1CgAwAAAACQASjQAQAAAADIAG6rA7Cz4BXsqqqqLI7E/jwejw4fPqyqqirl5eVZHQ7QZOQ07Ii8ht2Q07Aj8jp9gnVi+JXPKdBTqLq6WpJUWlpqcSQAAAAAgExUXV2t4uJiSZIjEF6uI6n8fr++/vprFRYWyuFwWB2OrVVVVam0tFTbt29XUVGR1eEATUZOw47Ia9gNOQ07Iq/TJxAIqLq6Wl26dJHTaZx9Tg96CjmdTnXr1s3qMHJKUVERHySwFXIadkRew27IadgReZ0ewZ7zICaJAwAAAAAgA1CgAwAAAACQASjQYQv5+fn61a9+pfz8fKtDAZKCnIYdkdewG3IadkReW4tJ4gAAAAAAyAD0oAMAAAAAkAEo0AEAAAAAyAAU6AAAAAAAZAAKdNjC//t//08OhyN069mzZ9y277zzjqZOnaqOHTsqPz9fXbt21aWXXqrPPvssfQEDEQ4dOqTnnntO119/vU455RR16dJFzZo1U+vWrTVq1Cg99NBDOnr0aNzHk9fIZF9++aWuueYa9ezZU/n5+WrXrp3Gjx+vF1980erQgCjl5eX6y1/+oosvvlgDBw5Uu3bt1KxZM3Xs2FGTJk3Sq6++GvNxPp9Pjz/+uM444wy1adNGBQUF6tOnj2bMmKGdO3emeS+A+nm9Xp1yyimm78/Tp0+PakdeWyAAZLkPPvgg4HA4ApJCtx49esRse9ddd5nahd+cTmfgr3/9a3qDB761ZMmSuLkZvA0fPjxQVVUV9VjyGplszpw5gebNm8fN0auuuirg9/utDhMImTlzZoOfxzfccIPpMTU1NYEJEybEbV9SUhL49NNPLdojINp9990X8/M4HHltDXrQkdUOHTqkH/7whwo04mIEb731lu6///7Q8ne/+139+te/1siRIyVJfr9fN910k1asWJGyeIGGFBYW6uKLL9Z9992nGTNmqKSkJLTt008/1e9+9ztTe/Iamay8vFzTpk3TkSNHJEkDBgzQfffdp0svvTTUZtasWfrLX/5iVYhAXN26ddP111+vX//617riiivkdrtD2x5//HG9++67oeU777xTZWVlkiSXy6XrrrtOd999t7p37y5J2rdvny666CIdOnQovTsBxLBy5UrTd4d4yGuLWP0LAdAUN998c0BSoKioKDBu3Lh6e9BHjBgR2n766aeH1tfW1gaOO+640LZLLrkkjXsAGFauXBn49a9/HaisrDSt37Bhg6n3cejQoabt5DUy2c9+9rNQDhYWFgb27t0b2jZt2rTQtq5duwa8Xq+FkQJ1nnvuucBzzz0XlZOzZ8829R7+5Cc/CQQCgcC+fftMn9O/+MUvQo9Zt26daZTfo48+mtZ9ASIdPXo0MHjw4ICkwLBhwwJdu3aN2YNOXluHHnRkrQULFoR6Xf73f/9XpaWlcdvu2rVLS5cuDS1fcMEFofvNmjXT9773vdDyW2+9Jb/fn4KIgfhOOukk/fKXv1RRUZFp/fHHH68TTzwxtBx+Hjp5jUz3xhtvhO6PHTvWNCLkwgsvDN0vLy/XsmXL0hobEM9ll12myy67TC6Xy7T+vPPOMy0HP4/LyspCo0Qkc27369dPAwcODC2HvycAKzzwwANavny58vPzNWvWLNPIkHDktXUo0JGVDh48qGuuuUaBQEATJ07U1VdfXW/7lStXmpZ79eoVd/nQoUP66quvkhcs0AS1tbXaunVraHn48OGh++Q1Mlltba3Wr18fWq4vP6XofAYyTXg+S3Wfx4l8FpPnsNLy5cv1m9/8RpJ03333acCAAXHbktfWif2TCZAGGzdulNfrbXT77t27q0WLFpKk22+/XZs3b1br1q3117/+tcHH7t2717Qc2UtZWFhoWq6oqNDxxx/f6NiAoKbkdSy33XabKioqJEnNmzfXT3/609A28hqZbP/+/ab5QRqTn0CmOnTokH70ox+Flvv27auLL75YUmKfxeQ5rOLxeDR9+nR5PB6ddtppuu222+ptT15bhwIdljnttNOi3vz1WbBggcaOHav33ntPjz/+uCTp4YcfVteuXRt8bCBiErmGlh0OR6PjAsIda15H8vl8uvnmm0O57na79eyzz5p+7SavkcnIT9jFnj17NHXq1NApRR07dtSbb76p5s2bS0os18lzWOX+++/XihUr1Lx5cz399NNRp3BEIq+twxB3ZJ0f/ehHCgQCmjJliq688spGPaZt27am5erqatNyVVWVaTn8PEkg3Q4ePKgpU6aEivP8/Hz985//NJ1jLpHXyGwlJSWmL23kJ7LRhg0bNHLkSH388ceSpNLSUi1cuFB9+/YNtUnks5g8hxW2b9+umTNnSjLOQe/Xr1+DjyGvrUOBDstUVFQoEAg0+hbsZdy1a5ck6c0335TD4QjdZs2aFXrurVu3yuFwqGfPnpKkQYMGmV5706ZNcZdbtmyp3r17p2CPkQuONa+Ddu7cqTFjxmjevHmSjP/03nnnnajiXCKvkdny8/NNRUx9+SlF5zNgtY8++kgjR44M5ergwYO1ZMkS9e/f39Qukc9i8hxW2Lt3b+j0u9tuu830/Tl8nptZs2bJ4XBo+vTp5LWFKNCREzp16qRhw4aFll955ZXQ/SNHjujNN98MLU+ePFlOJ28NpN+aNWt02mmn6fPPP5dkzOC+ZMkSnXnmmTHbk9fIdFOmTAndX7hwoen0jxdffDF0v0uXLqZcBqz20ksv6Tvf+U4oZydNmqRFixbFPK1uwoQJys/PDy2//PLLoftr1qzR2rVrQ8tTp05NYdRA8pDX1nEEIk8oADLcVVddpUOHDkWt/+yzz0K/ArZo0UITJ05Uhw4dQpdie/31102XSPnud7+rM844Q2+++aY++eQTSZLL5dLSpUs1dOjQ1O8IEGbTpk065ZRTVFlZKck45/y2225Tu3btotqGTxRHXiOT7dixQwMGDAgNjRwwYIAuvfRSrVmzRv/85z9D7R5++GH9v//3/6wKEzB56aWXdMkll4TOse3QoYN+8pOfRJ2zW1paqksuuUSSdOutt+qhhx6SZHzmXnPNNerUqZOefPJJ7dixQ5IxKeiaNWvUqlWr9O0MIGnLli2m7w7h5s2bp8OHD0uSevTooWHDhumss87SzTffTF5bJUXXVwfS7qqrrgpICkgK9OjRI2abX/ziF6E2kTeHwxF47LHH0hs08K0FCxbEzc3IWyTyGpnsjTfeCOTn58fN0csvvzzg8/msDhMI+dWvftWoz+IxY8aEHnP48OHA2WefHbdt69atA5988ol1OwXE0aNHj1CeXnXVVaZt5LU1GO+InPLAAw/o7bff1uTJk9WuXTvl5eWpc+fOuvjii/Xxxx/rhhtusDpEIGHkNTLZlClTtHz5ck2fPl2lpaVq1qyZ2rRpo3Hjxun555/X7NmzOf0CWa+goEBvv/22Hn30UY0cOVJFRUXKz89X7969dcstt2j16tUaMWKE1WECCSGvrcEQdwAAAAAAMgA/WQMAAAAAkAEo0AEAAAAAyAAU6AAAAAAAZAAKdAAAAAAAMgAFOgAAAAAAGYACHQAAAACADECBDgAAAABABqBABwAAAAAgA1CgAwAAAACQASjQAQAAAADIABToAADkkHvuuUcOhyPh249//GOrQwcAwPYo0AEAAAAAyAAU6AAAAAAAZAC31QEAAABrde3aVd///vfrbTNmzJg0RQMAQO6iQAcAIMcdf/zxeuihh6wOAwCAnMcQdwAA0GixJpl7+umnJUnPPfecxo8fr44dO8rlcmns2LExn+Pjjz/WLbfcosGDB6tdu3Zq1qyZOnTooFGjRunee+/Vrl27GhXLkiVLdPHFF6tz585q3ry5evTooenTp2vlypWSpOnTp0fFunDhwiT8FQAASA160AEAQJN4vV5dcMEFevXVV+ttV1FRoR/+8Id66623orbt2bNHe/bs0ZIlS/T73/9eDz30kK699tq4z/Xb3/5Wv/zlL+X3+0Prtm3bplmzZum5557Tn/70p2PfIQAALEKBDgAAmuTee+/Vjh076m1TUVGhkSNHauPGjQ0+36FDh3Tdddepurpat956a9T2Z555Rj//+c/jPt7j8ejGG29U9+7dGw4eAIAMQoEOAECO27hxY4PXOZ85c6YKCgpibgsW5+3bt9f48ePVsmVLffnll3K5XKE206dPjyrOW7ZsqQkTJqhDhw5av3591PDzn/3sZxozZoyGDh0aWnfgwAHNmDEjKoYWLVpo8uTJKikp0QcffKB169Zp69at9e4TAACZhgIdAIAcV15erocffrjeNvfcc0/cAl2SpkyZoueee06tWrUKrTt48KAk6ZNPPtGcOXNM7U8++WS9++67ateuXWjdq6++qgsvvFCBQECSMXT+/vvvNw2df+aZZ3TgwAHTc5WUlOijjz5S//79JUk+n0/Tp0/XP/7xj3r3CQCATMMkcQAAoEnatGmjZ555xlScSwotv/LKK1GPefDBB03FuSSdf/75Gj58uGnd3Llzdfjw4dDy22+/HfVcP/3pT0PFuSS5XC498sgjys/PT3xnAACwEAU6AABokvPOO0+tW7eOu/2TTz6JWnf22WdHzbDucDi0dOlSU7ujR4/q888/Dy2vWLEi6rnOOeecqHVt2rTRiBEjEtgLAACsR4EOAECOGzNmjAKBQL23+grwQYMG1fv8e/bsaVJ84Zdd27t3b9T2bt26xXxcvPUAAGQqCnQAANAkxcXFKX3+4Lns8Tgcjpjrg+eyAwCQLZgkDgAANEm8AjmoQ4cO+s9//mNad+2116ply5aNev4TTjghdL9t27b6+uuvTdu3b9+u9u3bRz2uvLy8Uc8PAECmoEAHAAApNXz4cH3wwQemdRMmTNBFF13U4GN9Pp/pcm2DBw+OKtDLyspMl2KTjMuxRZ7PDgBApmOIOwAASKkLLrggat0tt9yizz77LGZ7j8ejBQsW6Prrr9d5551n2jZx4sSo9n/4wx/05Zdfhpb9fr9+/OMfq7a2tmmBAwCQZvSgAwCAlBo5cqQmTpyoefPmhdbt3r1bw4cP1/Dhw9WvXz8VFxersrJSmzZt0qpVq0LnnY8ZM8b0XFdccYXuuusu07XQ9+7dqyFDhuh73/ue2rRpow8//DBqSD0AANmAAh0AAKTcrFmzNHLkSG3atMm0/tNPP9Wnn37a6OcpLi7Www8/rKuuusq0/vDhw3rxxRdDy263W7169TL1rAMAkOkY4g4AAFKuffv2+vjjj6OGrNenRYsWOvPMM6PWX3nllfrNb34Td3K6/Px8Pfnkkxo5cuSxhgsAgCXoQQcAAGnRrl07vfrqq1q+fLlmz56tjz76SJs3b9aBAwfkdDrVunVr9e7dWyeffLLOPvtsTZgwQa1atYr5XD//+c81duxY/fGPf9S///1v7d+/X506ddLZZ5+t2267TSeeeKLee++9NO8hAABN4whwkVAAAGBD06dP16xZs0zrFixYoLFjx1oTEAAADWCIOwAAAAAAGYACHQAAAACADECBDgAAAABABqBABwAAAAAgA1CgAwAAAACQAZjFHQAAAACADEAPOgAAAAAAGYACHQAAAACADECBDgAAAABABvj/udZVjX0Md3kAAAAASUVORK5CYII=", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot.Plotting_SpanSelector(freq, np.abs(spectrum), \"Freq\", \"Spectrum\", \"red\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 4 }