{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# PyOR \n", "## Author: Vineeth Thalakottoor\n", "## Introduction to MAS CSA" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Define the source path\n", "SourcePath = '/media/HD2/Vineeth/PostDoc_Simulations/Github/PyOR_V1/PyOR_Combined/PyOR/Source_Doc'\n", "\n", "# Add source path\n", "import sys\n", "sys.path.append(SourcePath)\n", "%matplotlib ipympl\n", "from joblib import Parallel, delayed\n", "\n", "# Import PyOR package\n", "from PyOR_QuantumSystem import QuantumSystem as QunS\n", "from PyOR_Hamiltonian import Hamiltonian\n", "from PyOR_QuantumLibrary import QuantumLibrary\n", "import PyOR_SphericalTensors as ST\n", "import PyOR_Rotation as Rot\n", "QLib = QuantumLibrary()\n", "from PyOR_DensityMatrix import DensityMatrix\n", "from PyOR_HardPulse import HardPulse\n", "from PyOR_Basis import Basis\n", "from PyOR_Evolution import Evolutions\n", "from PyOR_Plotting import Plotting\n", "import PyOR_SignalProcessing as Spro\n", "import PyOR_CrystalOrientation as CO\n", "import time\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Define the spin system\n", "Spin_list = {\"A\" : \"H1\"}\n", "QS = QunS(Spin_list,PrintDefault=False)\n", "\n", "# initialize the system\n", "QS.Initialize()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Set parameters" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rotating frame frequencies: {'A': -628541601.39}\n", "Offset frequencies: {'A': 0.0}\n", "Initial spin temperatures: {'A': 300.0}\n", "Final spin temperatures: {'A': 300.0}\n", "Radiation damping gain: {'A': 0}\n", "Radiation damping phase: {'A': 0}\n", "\n", "Rprocess = Phenomenological\n", "RelaxParDipole_tau = 0.0\n", "DipolePairs = []\n", "RelaxParDipole_bIS = []\n" ] } ], "source": [ "# Master Equation\n", "QS.PropagationSpace = \"Hilbert\"\n", "QS.MasterEquation = \"Redfield\"\n", "\n", "# B0 Field in Tesla, Static Magnetic field (B0) along Z\n", "QS.B0 = QS.L100\n", "\n", "# Offset Frequency in rotating frame (Hz)\n", "QS.OFFSET[\"A\"] = 0.0\n", "\n", "# Define initial and final Spin Temperature\n", "QS.I_spintemp[\"A\"] = 300.0\n", "QS.F_spintemp[\"A\"] = 300.0\n", "\n", "# Relaxation Process\n", "QS.Rprocess = \"Phenomenological\"\n", "QS.R1 = 1\n", "QS.R2 = 2\n", "\n", "QS.Update()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Zeeman Hamiltonians" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Larmor Frequency in MHz: [-100.0355028]\n" ] } ], "source": [ "# generate Larmor Frequencies\n", "QS.print_Larmor = True\n", "Ham = Hamiltonian(QS)\n", "\n", "# Lab Frame Hamiltonian\n", "Hz_lab = Ham.Zeeman()\n", "\n", "# Rotating Frame Hamiltonian\n", "Hz = Ham.Zeeman_RotFrame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### CSA tensor PAF" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle \\left[\\begin{matrix}800.0 & 0 & 0\\\\0 & 300.0 & 0\\\\0 & 0 & -950.0\\end{matrix}\\right]$" ], "text/plain": [ "Matrix([\n", "[800.0, 0, 0],\n", "[ 0, 300.0, 0],\n", "[ 0, 0, -950.0]])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "delta_iso = 50.00 # Hz\n", "delta_aniso = -1000.0 # Hz\n", "\n", "IT_PAF = Ham.InteractionTensor_PAF_CSA(Iso=delta_iso,Aniso=delta_aniso,Asymmetry=0.5)\n", "IT_PAF.Inverse2PI().matrix" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'Isotropic': 50.00000000000005,\n", " 'Anisotropy': -1000.0,\n", " 'Asymmetry': 0.5000000000000001}" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "PAF_Decom = Ham.InteractionTensor_PAF_Decomposition(IT_PAF)\n", "PAF_Decom" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Density Matrix" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Trace of density matrix = 1.0\n" ] } ], "source": [ "#-------------------------- \n", "# Initialize Density Matrix\n", "#--------------------------\n", "DM = DensityMatrix(QS,Ham)\n", "\n", "# High Temperature\n", "HT_approx = False\n", "\n", "# Initial Density Matrix\n", "rho_in = QS.Ax\n", "\n", "# Equlibrium Density Matrix\n", "rhoeq = DM.EquilibriumDensityMatrix(QS.Fspintemp,HT_approx)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Evolution" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rotating frame frequencies: {'A': -628541601.39}\n", "Offset frequencies: {'A': 0.0}\n", "Initial spin temperatures: {'A': 300.0}\n", "Final spin temperatures: {'A': 300.0}\n", "Radiation damping gain: {'A': 0}\n", "Radiation damping phase: {'A': 0}\n", "\n", "Rprocess = Phenomenological\n", "RelaxParDipole_tau = 0.0\n", "DipolePairs = []\n", "RelaxParDipole_bIS = []\n", "Larmor Frequency in MHz: [-100.0355028]\n", "Time points in one rotor period 8\n", "Total time = 12.95 seconds\n" ] } ], "source": [ "QS.AcqDT = 0.00025\n", "QS.AcqAQ = 1.0\n", "QS.Update()\n", "\n", "QS.PropagationMethod = \"Unitary Propagator Time Dependent\"\n", "\n", "EVol = Evolutions(QS,Ham)\n", "EVol.Update()\n", "\n", "A = \"A\"\n", "B = \"\"\n", "\n", "alpha, beta, gamma, weight = CO.Load_Crystallite_CSV(\"rep678_cryst.csv\")\n", "\n", "rhoI = rho_in\n", "\n", "start_time = time.time()\n", "freq, spectrum = Ham.MASSpectrum(EVol,rhoI, rhoeq, A, IT_PAF, B, \"spin-field\", \"secular\", alpha, beta, alpha, weighted=True, weight = weight, MagicAngle=54.7, RotortFrequency=500)\n", "end_time = time.time()\n", "print(\"Total time = %.2f seconds\" % (end_time - start_time)) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plotting" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "plot = Plotting(QS)\n", "plot.PlotFigureSize = (10,5)\n", "plot.PlotFontSize = 20\n", "plot.PlotXlimt = (-2000,2000)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(
,\n", " )" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "96242b8dc6d445359d5900c3796b959d", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAH0CAYAAACuKActAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMB0lEQVR4nO3de3gU9d3//9ceQgiYBCIE5SyIoEUOiihUAVFQsFCrFSi3Vu5aK1b7xd7a0lZrPVTRetuf9a5arRWRigpSWy0oQQShinhEBBQBD2BEgQBJwBD2ML8/4o672d3sbEgy80mej+viYnd2Zvc9eeWTnffOYX2WZVkCAAAAAACu8rtdAAAAAAAAoEEHAAAAAMATgm4XgETRaFSff/658vPz5fP53C4HAAAAAFoMy7JUWVmpzp07y+9v+v3ZNOge8/nnn6tbt25ulwEAAAAALdb27dvVtWvXJn9dGnSPyc/PlyR9/PHHKioqcrkaOBEKhVRSUqKxY8cqJyfH7XKQAXmZh8zMQl7mITOzkJdZyMs8e/bs0THHHGP3ZU2NBt1jYoe15+fnq6CgwOVq4EQoFFKbNm1UUFDAH14DkJd5yMws5GUeMjMLeZmFvMwTCoUkybXTjblIHAAAAAAAHkCDDgAAAACAB9CgAwAAAADgATToHuXGJf1RP36/X3379iUzQ5CXecjMLORlHjIzC3mZhbzM43ZWPsuyLFcrQIKKigoVFhaqvLyci8QBAAAAQBNyux/joxyPCofDbpcAh8LhsF599VUyMwR5mYfMzEJe5iEzs5CXWcjLPG5nRYPuUW4fWgHn/H6/unTpQmaGIC/zkJlZyMs8ZGYW8jILeZnH7aw4xN1j3D6kAgAAAABaKrf7MT7K8Si3D62Ac+FwWC+99BKZGYK8zENmZiEv85CZWcjLLORlHrezokH3KA5sMIdlWaqsrCQzQ5CXecjMLORlHjIzC3mZhbzM43ZWNOgAAAAAAHgADToAAAAAAB5Agw4AAAAAgAfQoAMAAAAA4AFBtwsAAAAtkGVJK1bU3B41SvL53KwGAABPYA+6RwUCAbdLgEOBQEDDhg0jM0OQl3nIzCyO8/rpT6XRo2v+XXll0xSHlBhjZiEvs5CXedzOyme5fR15JKioqFBhYaHKy8tVUFDgdjkAADS88nKpXbvEaWVlUlGRK+UAABDjdj/GHnSPCoVCbpcAh0KhkBYtWkRmhiAv85CZWRzl9eWXydO2b2+8olAnxphZyMss5GUet7NiD7rHxD6x2bdvnwoLC90uBw5YlqXKykrl5+fLxzmUnkde5iEzszjK6+OPpV69Eqe98YY0ZEjjF4gkjDGzkJdZyMs85eXlateuHXvQAZPl5eW5XQKyQF7mITOzZMzLn2LzIxptnGLgCGPMLORlFvJCNmjQPSocDrtdAhwKh8NavHgxmRmCvMxDZmYhL/OQmVnIyyzkZR63s6JBBwAAAADAAzzfoC9YsEDTp0/XkCFDlJubK5/PZ/9LJxKJ6MEHH9Tpp5+u9u3bKy8vT3369NGMGTO0Y8eOtMt9+OGHuuyyy9SzZ0/l5uaqQ4cOGjNmjObPn9/grwUAAAAAQLyg2wVkctttt+ndd991PP/Bgwf13e9+VyUlJQnTt2zZonvvvVd///vftWTJEg2pdSGaxYsX68ILL9TBgwftaWVlZXrxxRf14osvavHixZo9e3bCBwP1fS0AAFo0LpQEAEBKnt+D7vP51Lt3b02ePFkjR47MOP8NN9xgN8yBQECXX365brzxRnXv3l2StGfPHl100UU6cOCAvUxpaammTp1qN+cnnHCCbrnlFk2ZMsWeZ86cObr//vsP+7UAAAAAAEjF8w36q6++qi1btujJJ5/UqFGj6px37969uu++++z7M2fO1EMPPaSbb75ZJSUl9t7vTz75RHPnzrXnu/fee1VeXi5Jys/P16pVq/Tb3/5WTzzxhKZOnWrPN2vWLEUikcN6LQAAWjy+4RUAgJQ836Bn87UEJSUlCYeoX3jhhfbtvn37qn///vb9Z599NuXtUaNGqaioKOVzlJaW6q233jqs1wIAAAAAIBXPn4OejXXr1iXc79WrV9L99957L2He6upqbdq0qc5lar/G0KFD6/VaqVRXV6u6utq+X1FRIUmyLEuhUChpfr/fr0AgYO/JDwQCCofDstLsjQgEAvL7/QqHw/L7/fL7/SmfNyYYrPmVCIfDCbfTycnJUTQaVTQaVTAYVDQatWurzefzKRgMJtQeiUQUTfPdt7F1ja/dybqGQiFHtcfPE1uPTLXHr2usdsuyNGbMmITMyMl7OcXE5xWJRMjJoznVnn/8+PHy+Xx2ZuSUuK5eyClWu8/n0znnnKNgMJi+9nBYOSmeg5yS17WxcopfV0lJ72O1a2c81b2uTZFTrPZU2x3k5L2cYuLzikaj5ORgXd3Iqfb8bmpWDXpZWVnC/YKCgoT7+fn59u3du3dLqjlUPT6cupaJX64+r5XKrFmzdPPNNydNX7p0qdq0aZM0vXv37ho8eLDWrVunvLw89evXT6+//rp27dqV8vkHDRqkHj16aOXKlerfv7+Ki4tVUlKSdoCceeaZysvL0+LFizV+/HhVVVVp+fLlKecNBoM677zztHv3bq1fv16jR4/W9u3btXbt2pTzd+zYUcOHD9fmzZtVVVVlr8e2bdtSzt+3b197/bp06WKvR2VlZcr5hw0bZq/fGWecYa9HOrH1W7Vqlb0eq1evTjlvfn6+vX6lpaX2esR/uBOPnMhJIqeGzKl3797aunUrOdXitZwGDx6s9957T36/XwMGDEibU96uXRqb4jnIqUZT/9174403GE/yfk783atBTuTU2DnV3vHa1HxWuo8OPOimm25KaGZrl37FFVfooYcesu+Hw2H7k2FJuvjii/X4449Lklq3bq2qqirt2LFDnTt3tue54YYbdOutt9r3t2zZoj59+tj377jjDs2cObNer5VKqj3o3bp1044dO3TkkUcmzc+eWe99UhcKhfTSSy9p9OjRysnJSaidnNKvq1ufqMbnlZubS04ezSleJBLRsmXLdNZZZyknJ4ecUqyrF3KK1X7w4EG9+OKLOuecc+Tz+VLXvm2bco49NnHamjUKDR7sqHZySq79cPYkVVVVadmyZQnvY7VrZzzVva5Nuccv1XYHOXkvp5j4vFq3bk1ODtbV7T3o+/btU3FxscrLy5N2wjaFZrUHvXZDW1lZqXbt2tn3Y4ePS7LPMy8qKkrYgKj9KVD8MvHL1ee1UsnNzVVubm7S9DZt2iS9ScaL/zAg9gtdl/h56nreVPNkmj82SGvfTie+9kAgkHA/lfjanaxrNrXHz+Ok9vh5YrXn5OToO9/5Tsr5ySm9ps4p/nlq50VO6bmVU+3nPO+88xKmkVMiL+QU07p167R/E+MKqLOuuhclp1SyzSn+8by8vIyZMZ4yz9/YOcVqr2u7g5wyz99UOcW/bu28yCnz/E2dU7xUvVlT8vxF4rIxYMCAhPtbt25Nez82b25uro477jhHy8QvV5/Xyka6T4DgPdFoVDt37iQzQ5CXecjMLORlHjIzC3mZhbzM43ZWzapBHzt2bMInHk8//bR9e8OGDdq4caN9f+LEifbtCRMm2LdXrFiRcH75/Pnz7dudO3fWkCFDDuu1nEp3SAe8JxKJaPXq1WRmCPIyD5mZpd55mXPGXbPDGDMLeZmFvMzjdlaeP8T9gQcesPdGv/rqqwmPXXfddfbt66+/XkVFRbryyit1zz33SJLuuusu7dmzR0cddZQeeeQRe97u3bvrkksuse/PmDFDDz74oCorK7V//36NGDFCU6ZM0YYNGxIa75kzZ9qHRtT3tQAAAAAASMXzDfpTTz2ll19+OeVjd999t3376quvVvv27XX77bfrvffe07JlyxSJRBIu5CZJ7dq104IFC3TEEUfY07p27arHH39cF110kaqrq7Vx40bdeOONCctdfPHFuvrqqxOm1ee1AAAAAABIpVkd4i7VXOjkhRde0AMPPKBhw4apoKBAubm56t27t66++mqtX79eQ4cOTVpuwoQJWrt2raZNm6Zu3bqpVatWat++vUaPHq0nnnhCc+fOTbpQQX1fCwAA1OLzuV0BAACu8/we9BUrVmS9TDAY1PTp0zV9+vSsluvXr59mz57dJK8FAADicA46AADNbw86AAAAAAAmokH3KB+H+hnD5/MpPz+fzAxBXuYhM7OQl3nIzCzkZRbyMo/bWfksi2PKvKSiokKFhYUqLy9XQUGB2+UAANDwtm2TevRInPbaa9Kpp7pTDwAAX3O7H2MPukdFo1G3S4BD0WhUn376KZkZgrzMQ2ZmIS/zkJlZyMss5GUet7OiQfcot38x4Fw0GlVpaSmZGYK8zENmZiEv85CZWcjLLORlHrez4hB3j3H7kAoAABodh7gDADzK7X6MPegeFYlE3C4BDkUiEX3wwQdkZgjyMg+ZmYW8zENmZiEvs5CXedzOigbdo9w+tALORaNRbdq0icwMQV7mITOzkJd5yMws5GUW8jKP21nRoAMAAAAA4AE06AAAwH1cEgcAABp0AAAAAAC8gAYdAAA0LZ/P2TQAAFoYGnQAAAAAADyABt2j/H6iMYXf71f37t3JzBDkZR4yM4ujvFKdb8456K5hjJmFvMxCXuZxOyufZfGO6CUVFRUqLCxUeXm5CgoK3C4HAICGt22b1KNH4rTVq6XTTnOnHgAAvuZ2P8ZHOR4ViUTcLgEORSIRvfPOO2RmCPIyD5mZxVFenIPuKYwxs5CXWcjLPG5nRYMONIC8vDy3S0AWyMs8ZGaWeuXFAX2uYoyZhbzMQl7IBoe4e4zbh1QAANDoOMQdAOBRbvdj7EH3qHA47HYJcCgcDuvVV18lM0OQl3nIzCzkZR4yMwt5mYW8zON2VjToHsWBDeawLEu7du0iM0OQl3nIzCzkZR4yMwt5mYW8zON2VjToAAAAAAB4AA06AABoWuxJAgAgJRp0AAAAAAA8gAYdAAAAAAAPoEEHAAAAAMADaNA9KhAIuF0CHAoEAho0aBCZGYK8zENmZnGUF+egewpjzCzkZRbyMo/bWQVdfXWk5ffz2Ykp/H6/evTo4XYZcIi8zENmZql3XjTtrmGMmYW8zEJe5nG7D6ML9KhwOOx2CXAoHA7rpZdeIjNDkJd5yMws5GUeMjMLeZmFvMzjdlY06B7l9ic3cM7v96t///5kZgjyMg+ZmaXeefl8jVMQMmKMmYW8zEJe5nE7Kw5x9yi3fzHgnN/vV3FxsdtlwCHyMg+ZmcVRXhzO7imMMbOQl1nIyzxu92F0gR4VCoXcLgEOhUIhLVq0iMwMQV7mITOz1DsvmnbXMMbMQl5mIS/zuJ0VDTrQANw+VwXZIS/zkJlZyMs8ZGYW8jILeSEbNOgAAAAAAHgADToAAAAAAB5Agw4AAJoW55sDAJASDToAAAAAAB5Agw4AAAAAgAf4LIvjzLykoqJChYWF2rdvnwoLC90uBw5YlqXKykrl5+fL5/O5XQ4yIC/zkJlZHOX10UdS796J0159VRo2rPELRBLGmFnIyyzkZZ7y8nK1a9dO5eXlKigoaPLXZw860ADy8vLcLgFZIC/zkJlZMubFvgHPYYyZhbzMQl7IBg26R/F9ieYIh8NavHgxmRmCvMxDZmYhL/OQmVnIyyzkZR63s+IQd4/hEHfzWJalcDisYDDIoUsGIC/zkJlZHOW1dat07LGJ0zjE3TWMMbOQl1nIyzwc4g40A1VVVW6XgCyQl3nIzCzkZR4yMwt5mYW8kA0adI9y+9AKOBcOh7V8+XIyMwR5mYfMzOIoLw7e8xTGmFnIyyzkZR63s6JBBwAAAADAA2jQAQCA+9irDgAADToAAAAAAF5Agw4AAJpWqr3lXN0YAAAadAAA4AEc4g4AAA060BCCwaDbJSAL5GUeMjMLeZmHzMxCXmYhL2TDZ1l8ZO0lFRUVKiwsVHl5uQoKCtwuBwCAhrd5s3TccYnTXnlFGj7cnXoAAPia2/0Ye9A9KhqNul0CHIpGo9q5cyeZGYK8zENmZnGUF/sGPIUxZhbyMgt5mcftrGjQPcrtXww4F41GtX79ejIzBHmZh8zMQl7mITOzkJdZyMs8bmfFIe4e4/YhFQAANLoPP5T69k2cxiHuAAAPcLsfYw+6R7n9yQ2ci0aj+vTTT8nMEORlHjIzC3mZh8zMQl5mIS/zuJ0VDbpHRSIRt0uAQ5FIRGvXriUzQ5CXecjMLI7y4uA9T2GMmYW8zEJe5nE7Kxp0AAAAAAA8gAYdAAAAAAAPoEEHAADu47B3AABo0AEAAAAA8AIadAAA0LRS7S33+Zq+DgAAPKZZNuiVlZW64447NHz4cBUVFSkYDKpNmzY69thj9cMf/lBr1qxJWiYSiejBBx/U6aefrvbt2ysvL099+vTRjBkztGPHjrSv9eGHH+qyyy5Tz549lZubqw4dOmjMmDGaP3/+Ya2Djw0VY/h8PnXs2JHMDEFe5iEzs5CXecjMLORlFvIyj9tZ+SyreZ30VV5ertNOO00ffPBB2nn8fr/mzJmjiy++WJJ08OBBffe731VJSUnK+YuKirRkyRINGTIkYfrixYt14YUX6uDBgymXu/TSSzV79uysQq6oqFBhYaHKy8tVUFDgeDkAAIzxwQfS8ccnTvvPf6Rvf9udegAA+Jrb/Viz24P+0EMPJTTnI0eO1K233qorrrhCwWBQUs2Xz9944432PDfccIPdnAcCAV1++eW68cYb1b17d0nSnj17dNFFF+nAgQP2MqWlpZo6dardnJ9wwgm65ZZbNGXKFHueOXPm6P7776/Xerj9/XtwLhKJ6IMPPiAzQ5CXecjMLORlHjIzC3mZhbzM43ZWQVdfvRFs3brVvl1YWKhly5YpEAhIkqqrq/Xoo49Kknbt2iVJ2rt3r+677z57mZkzZ+q2226TJE2dOlXHH3+8LMvSJ598orlz52r69OmSpHvvvVfl5eWSpPz8fK1atUpFRUWSavbQz5s3T5I0a9YsTZ8+3a4BzVNVVZXbJSAL5GUeMjNLxrw4B91zGGNmIS+zkBey0ez2oJ9wwgn27crKSi1evFjV1dXasmVLwrnn5557riSppKQk4RD1Cy+80L7dt29f9e/f377/7LPPprw9atQouzmv/RylpaV66623sl4PGnpzBAIBDR48mMwMQV7mITOzkJd5yMws5GUW8jKP21k1uwb98ssv17BhwyTVHMo+ceJEtW7dWn369NH777+vQCCgyZMn66GHHpIkrVu3LmH5Xr16pb0fm7e6ulqbNm1ytEyq13DC7UMr4FwkEtE777xDZoYgL/OQmVnIyzxkZhbyMgt5mcftrJrdIe55eXlasWKFrrrqKj388MNJjx9//PH6wQ9+oPbt20uSysrKEh6vfSGA/Px8+/bu3bsl1RwWH39tvbqWiV8ulerqalVXV9v3Kyoq7OmhUChpfr/fr0AgYP/iBAIBhcNhpbvWXyAQkN/vVzgclt/vl9/vT/m8MbHz9MPhcMLtdHJychSNRhWNRhUMBhWNRtP+Uvt8PgWDwYTaI5GIotFoyvlj6xpfu5N1DYVCjmqPnye2Hplqj1/XWO2hUEjbtm1T3759lZOTk1A7OaVf16bOKSY+r9zcXHLyaE7xIpGItm3bpuO/vqgYOSWvqxdyitUeG2P9+/eXZVmpaw+FlFN7mmWRU4p1bayc4tf10KFDSe9jtWtnPNW9rk2RU6z2VNsd5OS9nGLi82rdujU5OVhXN3KKV1edTaHZNegVFRX63ve+p5deekmSNHToUI0fP16ffvqp5s6dq/Xr1+v888/X//7v/+raa69NCqau+7GrsWezTPxyqcyaNUs333xz0vTly5erTZs2SdO7d++uwYMHa926dcrLy1O/fv30+uuv2+fU1zZo0CD16NFDK1euVP/+/VVcXKySkpK0v3hnnnmm8vLytHjxYo0fP15VVVVavnx5ynmDwaDOO+887d69W+vXr9fo0aO1fft2rV27NuX8HTt21PDhw7V582ZVVVXZ67Ft27aU8/ft29devy5dutjrUVlZmXL+YcOG2et3xhln2OuRTmz9Vq1aZa/H6tWrU86bn59vr19paam9HvFHUixdutS+TU7ezSlm6dKl5GRATpLUtWtXSdKGDRvUtm1bcorjpZxi42nDhg32tHQ55W/frtEpnoOcajRFTvF/995++21Jie9jMYwn7+RUezzF50VO3s0pZunSpeRkQE6S1LNnz7R1NoVm9zVr1113ne6++25J0rHHHqv333/f/kTmlltu0e9+9ztJNXvav/jiC91xxx2aNWuWvfzevXvVrl07+/7EiRP13HPPSZI6d+6s0tJSVVdXKy8vz27EZ8yYoXvuucde5u2339bJJ59s33/ooYd0+eWXp6w31R70bt26aceOHTryyCOT5mfPrPc+qQuFQlq6dKnGjBnDHnQP5xQTnxd70L2bU7xIJKIlS5bonHPOUU5ODjmlWFcv5BSr/eDBg1qyZInGjx8vn8+XuvaNG5UzaFDitFdeUeiUUxzVTk7JtR/OnqSqqiqVlJQkvI/Vrp3xVPe6NvUe9NrbHeTkvZxi4vNiD7p3c4q3b98+FRcXu/Y1a81uD/qyZcvs2yeddJIdtqSE7zGvqqrShx9+qAEDBiQsv3Xr1oTmOv6q8LF5c3Nzddxxx9mf0sTPk+p+7deIl5ubq9zc3KTpOTk5SW+S8eIvXhC/junEz1PX86aaJ9P8sUFa+3Y68bUHAoGMF2KIr93JumZTe/w8TmqPn6d27akyI6f03Mop/vli08kpPbdzihc/Dzkl8lpOMWlrT1MjOaWev6lyqmvbg/GUef6mHk+p8iKnzPO79XcvJyfHfk5yyjy/a+9PXz+vm5rdReLiP2lZu3Ztwv3aV1PPy8vT2LFjExrkp59+2r69YcMGbdy40b4/ceJE+/aECRPs2ytWrEg4l33+/Pn27c6dOyd8MAAAAAAAQCrNbg/6iBEj9N5770mSPvzwQ40YMULnnHOOtm3bpscee8yer2vXrjr++OPl9/t15ZVX2oeo33XXXdqzZ4+OOuooPfLII/b83bt31yWXXGLfnzFjhh588EFVVlZq//79GjFihKZMmaINGzYkNPkzZ87M+GkOAAAtSvM6uw4AgAbT7M5B//LLL/Xtb3876TDzeLm5ufrXv/6lc845R1LN4e4TJkxIODw+Xrt27bRkyRINHTo0Yfpzzz2niy66KOEc8ngXX3yx5syZk9VhEhUVFSosLNSePXvsK83D2yKRiDZv3qw+ffrwYYwByMs8ZGYWR3lt2CD175847ZVXpOHDG79AJGGMmYW8zEJe5tm7d6+KiopcOwe92TXoUk2T++c//1nPPfecNm3apIqKCuXm5qpbt24688wzdc0116hv374Jy4TDYT388MN67LHHtGHDBlVXV6tr164aN26cfvWrX6lLly4pX+uDDz7QnXfeqWXLlunLL79U27ZtNXjwYF1++eWaMmVKvWovLCx07RcCAIBGR4MOAPAot/uxZtmgmyz2C1FWVqaioiK3y4ED4XBYr7/+uoYOHeroYhlwF3mZh8zM4igvGnRPYYyZhbzMQl7m2bNnj4488kjXGvRmd5G45sLtqwfCOb/fry5dupCZIcjLPGRmFkd5sW/AUxhjZiEvs5CXedzOio9xPMrtXww45/f71aNHD7fLgEPkZR4yMwt5mYfMzEJeZiEv87jdh9EFelQ4HHa7BDgUDof10ksvkZkhyMs8ZGaWeufFXnXXMMbMQl5mIS/zuJ0VDbpHcWkAc1iWpcrKSjIzBHmZh8zMQl7mITOzkJdZyMs8bmdFgw4AAJoWG6oAAKREgw4AAAAAgAfQoAMAAAAA4AE06AAAoGlxiDsAACnRoAMAAPfRtAMAQIPuVYFAwO0S4FAgENCwYcPIzBDkZR4yMwt5mYfMzEJeZiEv87idVdDVV0dafj+fnZjC7/eruLjY7TLgEHmZh8zMQl7mITOzkJdZyMs8bvdhdIEeFQqF3C4BDoVCIS1atIjMDEFe5iEzszjKi8PZPYUxZhbyMgt5mcftrHyW29/EjgQVFRUqLCzUvn37VFhY6HY5cMCyLFVWVio/P18+n8/tcpABeZmHzMziKK9335UGDUqctmqVdPrpjV4fkjHGzEJeZiEv85SXl6tdu3YqLy9XQUFBk78+e9CBBpCXl+d2CcgCeZmHzMxSr7zYX+AqxphZyMss5IVs0KB7VDgcdrsEOBQOh7V48WIyMwR5mYfMzEJe5iEzs5CXWcjLPG5nRYMOAACaFnvLzRSNSlVV5AcAjYgGHQAAAHX77DNpyBCpTRvp3HOlykq3KwKAZokGHQAAAHX705+kd96puV1SIj3xhLv1AEAzRYMOAACaFodIm+d//zfx/hVXuFMHADRzNOgAAMB9NO0AANCgAwAAAADgBT7L4iNrL6moqFBhYaH27dunwsJCt8uBA5ZlKRwOKxgMyufzuV0OMiAv85CZWRzl9c470kknJU57+WVpxIjGLxBJHGWWajqbkK7gb6JZyMs85eXlateuncrLy1VQUNDkr88edKABVFVVuV0CskBe5iEzs2TMi8bOcxhjZiEvs5AXskGD7lHhcNjtEuBQOBzWqlWryMwQ5GUeMjMLeZmHzMxCXmYhL/O4nRWHuHtM7BB3tw6pAACg0b39tnTyyYnTVqyQRo50pRw4wCHuAFoIt/sx9qB7VDQadbsEOBSNRrVz504yMwR5mYfMzOIoLxo7T2GMmYW8zEJe5nE7Kxp0j4pEIm6XAIcikYhWr15NZoYgL/OQmVnIyzxkZhbyMgt5mcftrGjQAQAAAADwABp0AAAAAAA8IFifhSKRiP7973/r5Zdf1ieffKKKioqMx+r7fD4tW7asXkUCAIBmhHPQAQBIKesGfc2aNfqv//ovffzxx46XsSxLvlRX/wQAAJBo2gEAUJYN+tatWzV27Fjt379fTr+djcYcAAAAAIDMsmrQb7vtNlVWVsrn89F4NzJ+vubw+XzKz88nM0OQl3nIzCyO8mJvuacwxsxCXmYhL/O4nZXPcrorXFL37t1VWlpq389iUfl8PtcvWW+CiooKFRYWqry8XAUFBW6XAwBAw3vjDWno0MRpy5dLo0a5Ug4cSLXBygctAJoht/uxrPag79y5U9I355RfeeWVmjx5so4++mi1atWqUQpsqTJddA/eEY1GtX37dnXr1k1+P1+M4HXkZR4yMwt5mYfMzEJeZiEv87jdh2XVoHfq1EmfffaZfD6fxo4dq/vuu6+x6mrx3P7FgHPRaFSlpaXq0qULf3gNQF7mITOz1Dsv9sa6hjFmFvIyC3mZx+0+LKvfklGjRtmHtXfv3r1RCkKNYLBe34AHFwSDQQ0fPpzMDEFe5iEzszjKi2bcUxhjZiEvs5CXedzOKqsG/Ze//KVyc3MlSc8//7wOHDjQKEVBnK9vkEgkog8++IDMDEFe5iEzs5CXecjMLORlFvIyj9tZZdWgf+tb39Jf//pX+f1+lZaW6owzztALL7ygQ4cONVZ9LZbbh1bAuWg0qk2bNpGZIcjLPGRmFvIyD5mZhbzMQl7mcTurrPffX3zxxTp06JB+/OMf691339V5550nv9+vjh07qnXr1mmX8/l82rp162EVCwAAmgEOcQcAIKWsG/SnnnpKM2bMkM/ns89Hj0Qi+uKLL+pczu3vkwMAAB5G0w4AQHYN+ltvvaUf/vCHCoVC8vl8jpvubL4vHQAAAACAliirc9DvuOMOuzkHAAAAAAANJ6s96K+++mpCc86ecQAAkDW2HwAASCmrPej79u2TVNOYt2rVSg888IA++ugjffXVV4pGo3X+c/ty9abx+7OKBi7y+/3q3r07mRmCvMxDZmYhL/OQmVnIyyzkZR63s/JZWewG79+/vzZu3Cifz6fJkydr3rx5jVlbi1RRUaHCwkKVl5eroKDA7XIAAGh4r70mDRuWOG3ZMmn0aHfqQWapTm/kSAgAzZDb/VhWHw98//vft28HAoEGLwbf4IgDc0QiEb3zzjtkZgjyMg+ZmcVRXqkaO5o91zDGzEJeZiEv87idVVYN+i9+8Qv17NlTlmXp2Wef1aZNmxqrLsAoeXl5bpeALJCXecjMLORlHjIzC3mZhbyQjawOcd+2bZu2bt2qSZMmqaysTAUFBZo+fbrGjBmjbt26qXXr1nUu371798MuuLlz+5AKAAAa3erV0vDhidNefFE66yx36kFmHOIOoIVwux/Lag96z549dfbZZ2vPnj3y+XyqqKjQXXfdpbFjx+r444/XMccck/Zfr169GmsdmqVwOOx2CXAoHA7r1VdfJTNDkJd5yMws5GUeMjMLeZmFvMzjdlZZfc2a9M1Xq/l8Pvl8Pr5qrZHwczWHZVnatWsXmRmCvMxDZmZxlBdZegpjzCzkZRbyMo/bWWXdoPtqHeJU+34qbq8kAADwOLYVAADIvkGXaLgBAAAAAGhoWTXoI0aMcLTHHAAAAAAAZCerBn3FihWNVAYAAGgxOBIPAICUsrqKOwAAAAAAaBw06B4VCATcLgEOBQIBDRo0iMwMQV7mITOzkJd5yMws5GUW8jKP21nV6yJxaHx+P5+dmMLv96tHjx5ulwGHyMs8ZGYWR3mlOsSdw95dwxgzC3mZhbzM43YfllWD/qMf/ajeL+Tz+fS3v/2t3su3NOFw2O0S4FA4HNbKlSs1YsQIBYN85uV15GUeMjMLeZmHzMxCXmYhL/O43Ydl9Vvy6KOP1usq7pZl0aBnye1PbuCc3+9X//79ycwQ5GUeMjMLeZmHzMxCXmYhL/O4nRXfg+5Rbv9iwDm/36/i4mK3y4BD5GUeMjMLeZmHzMxCXmYhL/O43YfV69V9Pl9W/9zyzjvv6Ec/+pF69+6tvLw8FRQU6Nhjj9WUKVNUUlKSMG8kEtGDDz6o008/Xe3bt1deXp769OmjGTNmaMeOHWlf48MPP9Rll12mnj17Kjc3Vx06dNCYMWM0f/78w6o9FAod1vJoOqFQSIsWLSIzQ5CXecjMLI7y4oN+T2GMmYW8zEJe5nE7q6z3oDvde+7z+Vzd037zzTfr5ptvTqjh4MGDqqys1NatW3XEEUdo7Nix9vTvfve7SU37li1bdO+99+rvf/+7lixZoiFDhiQ8vnjxYl144YU6ePCgPa2srEwvvviiXnzxRS1evFizZ8929UMKNA23z1VBdsjLPGRmlnrlRdPuKsaYWcjLLOSFbGTVoC9fvrzOx8vKyvTpp5/qySef1BtvvCGfz6cOHTrokUce0RFHHHFYhWbjgQce0E033WTfHzZsmIYPH66ioiLt2bNH77//vjp06GA/fsMNN9jNeSAQ0I9+9CMdffTRevTRR7Vt2zbt2bNHF110kdavX6+2bdtKkkpLSzV16lS7OT/hhBM0ZcoUbdy4UU8++aQkac6cOTrllFN01VVXNdGaAwAAAABMlVWDPnLkSEfz/fznP9cjjzyiH//4x9q9e7f+7//+Ty+88EK9CsxWRUWFfvWrX9n3//KXv+iKK65IO//evXt133332fdnzpyp2267TZI0depUHX/88bIsS5988onmzp2r6dOnS5LuvfdelZeXS5Ly8/O1atUqFRUVSao5b2HevHmSpFmzZmn69Omuf58eAACewd5yAABSarQz4H/0ox9p9OjRsixLS5cutfcqN7aFCxeqoqJCktStWzft379fAwcOVNu2bdWhQwedf/75WrNmjT1/SUlJwiHqF154oX27b9++6t+/v33/2WefTXl71KhRdnNe+zlKS0v11ltvNdDaAQAAAACaq0a9RF3fvn3t24888khjvpTt1VdftW9v375d1113ndatW6evvvpKZWVl+te//qXTTz/dvojbunXrEpbv1atX2vuxeaurq7Vp0yZHy6R6DQAAAAAAaqvX16w5UV1drVWrVtkXi1u7dm1jvVSC2ldcz83N1eWXX668vDw99NBDKi8vVzgc1o9//GOdddZZKisrS5i/oKAg4X5+fr59e/fu3ZJqDouPv/hcXcvEL5dKdXW1qqur7fuxvf+hUCjlFQT9fr8CgYAikYikmnPmw+Fw2gvyBQIB+f1+hcNh+f1++f3+Oq9MGAzW/EqEw+GE2+nk5OQoGo0qGo0qGAwqGo3atdXm8/kUDAYTao9EIopGoynnj61rfO1O1jUUCjmqPX6e2Hpkqj1+XWO1x36e8T9XcvJeTjHxeZGTd3OKF3ueSCSSsB7k5K2cao+n2Oukqt0XDqfcACGn5HVt7Jxi6yGl/vnHak8l1fzk1Lg5WZaVcruDv3veyykmPi9y8m5O8dI9T1PJqkFfuXJlnY9Ho1FVVVWptLRUs2fP1vr16+0rmFdWVta/yiwcOnQo4f5dd92ln/3sZ5KkM844QxMnTrTrefbZZ5OCqet+bF2yWSZ+uVRmzZqlm2++OWn68uXL1aZNm6Tp3bt31+DBg7Vu3Trl5eWpX79+ev3117Vr166Uzz9o0CD16NFDK1euVP/+/VVcXKySkpK0A+TMM89UXl6eFi9erPHjx6uqqirtxQGDwaDOO+887d69W+vXr9fo0aO1ffv2tB/GdOzYUcOHD9fmzZtVVVVlr8e2bdtSzt+3b197/bp06WKvR7rfpWHDhtnrd8YZZ9jrkU5s/VatWmWvx+rVq1POm5+fb69faWmpvR7xR1IsXbrUvk1O3s0pZunSpeRkQE5SzXg688wz9f7775NTLV7LafDgwXr//ffVs2dPBYNBrV69OmVOR65fr9NrT7QscvpaU+QU/3fvnXfekZT4PhYTG0+ppFoHcmq8nGr/3YvPi7973s0pZunSpeRkQE5S8tHQTc1nZfFdaH6/P6uvDLMsy96Dfswxx2jr1q31KjIbkyZN0oIFC+z769at04knniipZu90YWGh/dj111+vaDSqWbNm2dP27t2rdu3a2fcnTpyo5557TpLUuXNnlZaWqrq6Wnl5eXYjPmPGDN1zzz32Mm+//bZOPvlk+/5DDz2kyy+/PGW9qfagd+vWTbt27UqoNYY9ft77pM6yLPvnFRsf5OS9nGLi8woEAuTk0Zxqzx97P/H5fOSUYl29kFN87eFwWLm5uYpEIqn3oK9cqeDZZydOfOEFhUaPdlQ7OSXXfjh7kmJH7cW/j9WuXSm2/0K1dorUrp2ckmtviD1+qbY7+LvnvZxi4vMKBoPk5GBd3d6Dvn//fhUVFam8vDzpSOmmUK9D3LP9LnSfz6fzzjuvPi+Vtf79+yc06LXride6dWsde+yxCdO2bt2a0FzHf6gwYMAASTWHzR933HH2pzS1P3iofT+2XCq5ubnKzc1NWWtOTk7a5eKvCh/7ha5L/Dx1PW+qeTLNHxuktW+nE197rEGqS3ztTtY1m9rj53FSe/w8sdpDoZCWLl2q8ePHJ70eOaXX1DnFxOcVm05O6bmVU7xQKGTvPYjVTE6JvJBTjGVZWrJkScq/ibY060ROqedvjJxqP57ufcxJfZkeI6dvHE5Osdrr2u7g717m+Zsqp5j4vGLPSU6Z52/qnOK5fYh7vS4SF9uLkelfTKdOnfSb3/ymwYquy3e+852E+y+//HLK25I0ZMgQjR07NqFBfvrpp+3bGzZs0MaNG+37scPjJWnChAn27RUrViScyx67AJ1Us9d9yJAhWa+Hk194eEMwGExoHOBt5GUeMjOLo7z4mjVPYYyZhbzMQl7mcTurrF89iyPiJdWcfzB79mwdddRR2b5UvZx00kkaN26cnn/+eUnSL37xC23evFmtW7fWX//6V3u+fv36acyYMQoEArryyivtQ9Tvuusu7dmzR0cddVTClee7d++uSy65xL4/Y8YMPfjgg6qsrNT+/fs1YsQITZkyRRs2bEho8mfOnJnx0xyYr6qqKunigPAu8jIPmZmFvMxDZmYhL7OQF7KR1Tno06ZNy3gOut/v1xFHHKFjjjlGI0eO1ODBgw+7yGx9+eWXOuuss7Rhw4aUjx911FF68cUX9a1vfUtSzaCZMGGCli1blnL+du3aacmSJRo6dGjC9Oeee04XXXRRwjnk8S6++GLNmTMn4+EZ8WLnye/evVtHHnmk4+XgnvjDb7M5NBDuIC/zkJlZHOW1YoV05pmJ055/Xjr33EavD8kcZZZq+48jIVzB30SzkJd5ysrK1KFDBzPOQX/00UcbqYyG1alTJ61Zs0b33HOPFixYoC1btigSiahnz56aMGGCrrvuOhUXF9vz5+Xl6YUXXtDDDz+sxx57TBs2bFB1dbW6du2qcePG6Ve/+pW6dOmS9DoTJkzQ2rVrdeedd2rZsmX68ssv1bZtWw0ePFiXX365pkyZ0pSrDQAAAAAwWFYNeu3L7nfp0sWzh2+3bdtW119/va6//npH8weDQU2fPl3Tp0/P6nX69eun2bNn16dEAABaJva8AgCQUlYNes+ePe1D3IuKivT55597tkEHAAAAAMAkWV3FPTc31/7+xVGjRnEeBQDAO6qrpU2bpMpKtysBAACol6wa9KOPPtr+CrX4c7gBAHDV7t3SqadK/fpJ3/qW9MEHbleEunCIOwAAKWXVoI8ePdr+mrWPPvqoUQoCTOT29yUiO+RlnoyZ/eUv0rvv1tzevl266aZGrwnp1WuM0bS7ir+LZiEvs5AXspHV16xt3LhRJ598sqqrq5WTk6PXX39dAwcObMz6WpzY16y5dVl/ADASXwFllpdeks46K3Ha4sXSuHHu1IPMGGMAWgi3+7Gs9qCfcMIJeuSRR5STk6NQKKQxY8bo8ccfVygUaqz6WqxoNOp2CXAoGo1q586dZGYI8jIPmZmFvMxDZmYhL7OQl3ncziqr4y1Gjx4tSWrfvr127typ3bt364c//KF+8pOfqG/fviosLLSv8l6bz+fTsmXLDr/iFsLtXww4F41GtX79eo0YMUJ+f1afecEF5GUeMjOLo7zY8+opjDGzkJdZyMs8bvdhWR3i7vf7kxrw+MXTNeeWZcnn8ykSidSzzJbD7UMqAMBIHH5rlmXLpLPPTpzGIe7exhgD0EK43Y/V62Oc2FetSbKv6h4/Pf4f6sftT27gXDQa1aeffkpmhiAv85CZWeqdF9sMrmGMmYW8zEJe5nE7q3o16PFNee1ptf+hfjjawByRSERr164lM0OQl3nIzCyO8qIZ9xTGmFnIyyzkZR63s8r6mv/sFQcAAAAAoOFl1aB//PHHjVUHAAAAAAAtWlYNeo8ePRqrDgAAAAAAWjSu9Q8AAJoWp8sBAJBSVnvQe/XqZd/+0Y9+pBtuuKHO+V9++WW99dZb9v3/+Z//ybI8AADQItC0AwCQXYP+ySefSKq5YvuePXsyzv/Pf/5T9957r32fBt05roBvDp/Pp44dO5KZIcjLPGRmFvIyD5mZhbzMQl7mcTurrK/inm3B8d+XDueCwayjgUuCwaCGDx/udhlwiLzMQ2ZmIS/zkJlZyMss5GUet/uwRj0H/cCBA4359M2a29+/B+cikYg++OADMjMEeZmHzMziKC8OZ/cUxphZyMss5GUet7NqtAZ93759WrFiBXvO0SJUVVW5XQKyQF7mITOzkJd5yMws5GUW8kI2fJaV/mPs+IvCSTXnoMca7vz8fBUVFaVcLhKJ6Msvv1QoFJJUc5j7EUccoYqKioaqu9mqqKhQYWGhysvLVVBQ4HY5AGCGVB8Gs5fWu0pKpHPOSZz23HPSd77jTj3IjDEGoIVwux+r8wD7WEMe38PHbldUVGTVcB9zzDH1LLFlcvvQCjgXiUS0bt06DRgwQIFAwO1ykAF5mYfMzOIoLxo7T2GMmYW8zEJe5nG7D3N0iLvP50s6VD02LdO/2Lzjxo1r+OqbsWg06nYJcCgajWrbtm1kZgjyMg+ZmYW8zENmZiEvs5CXedzOqlEvEhfb296zZ0/94he/aMyXAgAAAADAaBmvIZ/uFPU6Tl2X3+/XEUccoT59+mj8+PG65ppr1L59+/pXCQAAAABAM1dng157977f77cPW58xY4b++Mc/Nl5lAACgeeIcdAAAUsr6W9jr2nMOAABQL2xfAACQXYM+e/Zs+/YJJ5zQ4MUAAAAAANBSZdWgX3rppY1VB2rx+xv1+n1oQH6/X3379iUzQ5CXecjMLI7yYm+5pzDGzEJeZiEv87idVVYN+q5du/TEE0/Y97t166bvfe97KedduHChSktL7ftTp05Vhw4d6llmy8P3JJojEAioX79+bpcBh8jLPGRmFvIyD5mZhbzMQl7mcbsPy+rjgX/961+65ppr9POf/1w///nPdejQobTz+ny+hHmfeeaZwy62JQmHw26XAIfC4bBeffVVMjMEeZmHzMxCXuYhM7OQl1nIyzxuZ5VVg75kyRJJNReKKy4u1kUXXZR23u9973vq3LmzfVG5kpKSwyiz5XH70Ao45/f71aVLFzIzBHmZh8zMUu+8OOzdNYwxs5CXWcjLPG5nldWrb9y4UVLN3vHTTz+9zuJ9Pp++/e1vJy0LZ9z+xYBzfr9fPXr0IDNDkJd5yMwsjvKiGfcUxphZyMss5GUet7PK6tW/+OIL+3vQjzrqqIzzFxcXS6rZ4/7FF1/Uo7yWy+1DK+BcOBzWSy+9RGaGIC/zkJlZyMs8ZGYW8jILeZnH7ayyatAPHDhg3963b1/G+cvLy1Mui8z4vnlzWJalyspKMjMEeZmHzMxCXuYhM7OQl1nIyzxuZ5VVg96uXTtJNUWvXLlS0Wg07byRSEQrVqyw97gXFhbWv0oAANB8sKEKAEBKWTXoPXr0sD9R+OyzzzRr1qy0886aNUufffaZfb9nz571qxAAAAAAgBYgq+9B//a3v6033nhDPp9PlmXpxhtv1IYNG3TFFVeoX79+8vl8ev/99/Xggw/qqaeesufz+XwaPnx4Y60DAAAwHXvVAQDIrkGfOnWq7rnnHkmym++nnnpKTz31VNK8scY8flkAAAAAAJBaVoe4DxkyROecc459mHusSU/1L9ac+3w+jRkzRqecckrDVw8AAMzD3nIAAFLK+kveHn30UXXu3Nm+7/P5Uv6TavaiH3300Xr00UcbrOCWIhAIuF0CHAoEAho2bBiZGYK8zENmZiEv85CZWcjLLORlHrezyrpB79Spk1avXq2TTjrJ3lteW2z6ySefrFdffdXRd6Yjkd+fdTRwid/vV3FxMZkZgrzMQ2ZmIS/zkJlZyMss5GUet7Oq16t369ZNb7zxhubPn6/JkyerR48eat26tVq3bq3u3btr0qRJWrBggd544w117969oWtuEUKhkNslwKFQKKRFixaRmSHIyzxkZhZHeaU6xJ3D3l3DGDMLeZmFvMzjdlY+y+1vYkeCiooKFRYWat++fXx3vCEsy1JlZaXy8/MTLowIbyIv8zjKLNV03t5c4Siv556TJk5MnPbMM9L55zd6fUjGGDML72NmIS/zlJeXq127diovL1dBQUGTvz7HWgANIC8vz+0SkAXyMg+ZmYW8zENmZiEvs5AXsnHYDfrBgwf16quv6plnntHcuXP15ptvNkRdLV44HHa7BDgUDoe1ePFiMjMEeZmHzMxCXuYhM7OQl1nIyzxuZ5XV96DHW7t2rW699VYtXrxYhw4dsqfPmDFDJ510ks4//3zt379fkjRixAjddNNNh10sAABoBjg0GgCAlOq1B/1Pf/qTTj31VP3zn/9UdXV10tXc/X6/jjrqKK1YsUIrVqzQ3Xffra+++qrBigYAAM0MTTsAANk36H/729/085//XKFQSJZlJXzvebwf/OAH9u2vvvpKJSUlh1cpAAAAAADNWFYN+s6dO3XNNdfYTbnP50v5PeiSdMYZZ+iII46wm/dly5YdfrUAAMB87C0HACClrBr0v/zlLzpw4IAk2Y350KFDUzbpwWBQJ554ov3Yu+++e7i1AgAAAADQbGXVoC9ZskSS7EPb//GPf+i1116TpJSHuffu3duef+vWrYdbKwAAAAAAzVZWV3HfsmWL3YiPGjVK3/3ud+ucv7Cw0L69b9++7KtrwYLBel9gH00sGAxq/PjxZGYI8jIPmZmFvMxDZmYhL7OQl3ncziqrPejxTXbfvn0zzl9eXm7fjkaj2bwUYJSqqiq3S0AWyMs8ZGaWjHmlOged89JdxRgzC3mZhbyQjawa9IKCAvv2zp07M86/adMm+3a7du2yeakWLxwOu10CHAqHw1q1ahWZGYK8zENmZiEv85CZWcjLLORlHrezymr/fdeuXbVnzx5ZlqWSkhLt3btX7du3TznvW2+9pTfeeMM+JP6YY445/GpbkJycHLdLgEM5OTk677zz3C4DDpGXecjMLORlHjIzC3mZhbzM43YfltUe9NNPP92+QNz+/ft19tlna8WKFQnzHDhwQAsXLtR3vvOdhK9h+/a3v91gRbcEnBJgjmg0qp07d5KZIcjLPGRmFvIyD5mZhbzMQl7mcTurrBr0iy++2L7t8/n0zjvv6KyzzpJUc6V2y7L08MMPa9KkSfryyy8Tlr3kkksaoNyWIxKJuF0CHIpEIlq9ejWZGYK8zENmZnGUF+ebewpjzCzkZRbyMo/bWWXVoJ966qk677zzEr73vPZ3oMca9dih7T6fT+eff74GDBjQAOUCAIBmiaYdAIDsGnRJevTRR9W7d2+7CU/3T6pp1nv37q2//vWvDV44AAAAAADNSdYN+pFHHqnXXntN48ePt/eW196jHvs3btw4vfrqqyoqKmrQogEAgMHYWw4AQEr1+hb2I488Uv/+97/1+uuva+HChVqzZo127dolSSouLtYpp5yiCy64QKeddlqDFgsATaqiQqquljp2dLsSAAAAtABZ70GPN3ToUN15551asWKFNmzYoA0bNmj58uX6wx/+4KnmPBwO6+STT044BH/atGlJ80UiET344IM6/fTT1b59e+Xl5alPnz6aMWOGduzYkfb5P/zwQ1122WXq2bOncnNz1aFDB40ZM0bz589vxLUC0Kj+9S+pc2epuFi69lq3qwEAAEALcFgNuilmzZqlt99+u855Dh48qPHjx2v69Ol65ZVXtG/fPh08eFBbtmzRvffeq/79++vNN99MWm7x4sUaOHCgHnnkEX366ac6dOiQysrK9OKLL2ry5MmaNm1a0oX0nIidxw/v8/l8ys/PJzNDOM7rqqukAwdqbv/xj9LWrY1fHFJijJmFvMxDZmYhL7OQl3nczspn1ad7/FppaalKSkq0du1a7d69Wz6fT0ceeaQGDRqkMWPGqGvXrg1Za72sW7dOQ4YMUSgUSph+6aWX6tFHH7XvX3fddbr77rslSYFAQD/60Y909NFH69FHH9W2bdskST179tT69evVtm1bSTXr/61vfUvl5eWSpBNOOEFTpkzRxo0b9eSTT9rP/ec//1lXXXWVo3orKipUWFio8vJyFRQU1Hu9ARym2n+c77hDmjnTnVqQWao3U85z9q6FC6Xvfz9x2oIFydPgHYwxAC2E2/1Yvc5B/+KLL/Tzn/9cCxcuTPs9cYFAQBdccIH++Mc/qnPnzodVZH2FQiFdeumlCoVCGjJkiHbs2KHS0tKk+fbu3av77rvPvj9z5kzddtttkqSpU6fq+OOPl2VZ+uSTTzR37lxNnz5dknTvvffazXl+fr5WrVplXxDP7/dr3rx5kmr24E+fPl2BQMBx7dFotH4rjSYXjUa1fft2devWTX5/izgoxWj1ziscbryiUCfGmFnIyzxkZhbyMgt5mcftPizr35K3335bJ554oubPn69wOJxw1fb4f+FwWAsWLNDAgQP11ltvNUbtGd12221au3atcnNzNWfOHAWDqT+PKCkp0cGDB+37F154oX27b9++6t+/v33/2WefTXl71KhRCVerj3+O0tLSrH8Gbv9iwLloNKrS0lIyM0S980rzYSQaH2PMLORlHjIzC3mZhbzM43ZWWTXoZWVlOvfcc1VWVpbxe9B9Pp8sy1JZWZnGjx+vsrKyxlqHlNauXavbb79dknTLLbfohBNOSDvvunXrEu736tUr7f3YvNXV1dq0aZOjZVK9RibpPkyA9wSDQQ0fPpzMDFHvvHhjdQ1jzCyO8uLQaE9hjJmFvMxCXuZxO6usXv3OO++0zzWPSXcKe3yTvnv3bt155536wx/+cHjVOhQKhTRt2jSFQiGddtppujbDFZhrf3hQ+1yD/Px8+/bu3bsl1RwWH7/udS0Tv1xt1dXVqq6utu9XVFRIqrloXV5eXtL8fr9fgUDAPrUgEAjYRzKkEggE5Pf7FQ6H5ff75ff7k87Hjxf7hQyHwwm308nJyVE0GlU0GlUwGFQ0Gk172oPP51MwGEyoPRKJpP2UKrau8bU7WddQKOSo9vh5YuuRqfb4dY3VHolEtHXrVvXu3ds+jYGcvJdTTHxeOTk5aXPKqfXckUhEvmiUnBysa0PkFM+yLH300Ufq1auXAoFAyvFUO69YLeSUfl0bOqdY7YcOHdKWLVvUt29f+6i6pOcOh1NugJBT8ro2Vk7x61pdXa0tW7YkvI/Vrj2VVHmRU+PlFKs91XYH2xHeyykmPq9WrVqRk4N1dSOneHVl0hSyatD/9a9/JTXnQ4cO1TnnnKOuXbvKsiz7wnFr1qxJaNL/9a9/NVmDfuutt+rdd99V69at9eijj2Y897t2OHXdj61/NsvEL1fbrFmzdPPNNydNX7Zsmdq0aZM0vXv37ho8eLDWrVunvLw89evXT6+//rr9PfS1DRo0SD169NDKlSvVv39/FRcXq6SkJO0AOfPMM5WXl6fFixdr/Pjxqqqq0vLly1POGwwGdd5552n37t1av369Ro8ere3bt2vt2rUp5+/YsaOGDx+uzZs3q6qqyl6P2EX4auvbt6+9fl26dLHXo7KyMuX8w4YNs9fvjDPOsNcjndj6rVq1yl6P1atXp5w3Pz/fXr/S0lJ7PeKPotiyZYt9m5y8m1PMli1b6szpu7Xm37x5s/K2byenNBorJ0nq2rWrPvvsMx04cEBt27ZNOZ5q5yWJnFJozJxi4+m9997TZ599pj59+uiNN95I+Xfv6Hfe0dDaEy2LnL7WFDnF/9178803tXv37oT3sZjY+1MqqdaBnBovp9p/9+LzYjvCuznFbNmyhZwMyEmquTC4m7K6inubNm1UXV1tH97+l7/8RZdffnnKef/2t7/p8ssvtxv01q1b66uvvmqwwtPZvn27evXqpXA4rLvvvlv/8z//Yz/Ws2dPffrpp5ISr+L+m9/8RrNmzbLn27t3r9q1a2ffnzhxop577jlJUufOnVVaWqrq6mrl5eXZjfiMGTN0zz332Mu8/fbbOvnkk+37Dz30UMqfVao96N26ddOOHTt05JFHJs3PnlnvfVIXCoW0dOlSjRkzRjk5OQm1k1P6dXXrE9X4vHJzc9PvQW/VKuG5IzfcIN/NN5OTg3Vt6E++I5GIlixZonPOOcc+6iFpD3qtvCQpHAqRUx3r2lh7KA4ePKglS5Zo/Pjx9jZA0nMvXKjgD36QOHH+fIXOP99R7eSUXPvh7EmqqqpSSUlJwvtY7dpTXcU9dOhQnbWTU3LtDbHHL9V2B9sR3sspJj6v1q1bk5ODdXV7D/q+fftUXFxsxlXcjzjiCFVXV8vn82nkyJFpm3NJuuyyy/T4449rxYoVkpIP+W4sZWVldvjXXntt2sPb58yZozlz5ujSSy/Vueeem/DY1q1bE5rrrXHffzxgwABJUm5uro477jj7k5qttb4jufb92HK15ebmKjc3N2l6Tk5O0ptkvPijAmK/0HWJn6eu5001T6b5Y4O09u104muPHa5al/janaxrNrXHz+Ok9vh5ateeKjNySs+tnOKfL/7QwEy1B/x+6evnJKfM8zdUTvHi52E8JfJaTjFpa0/zHOSUev6myinTtke6+jI9Rk7faMjxlCov/u5lnt+tv3s5OTn2c5JT5vlde3/6+nndlNWrn3jiifYnDXVddC3m+OOPl1TzKcfAgQPrUV7TGDt2bEKT/PTTT9u3N2zYoI0bN9r3J06caN+eMGGCfXvFihUJ57LPnz/fvt25c2cNGTKkwesGAAAAADQfWe1BnzZtmn3ew0cffZRx/o8//ti+fdlll2VZWv20a9cu4SvO4j3//PP2YfY9evTQkCFDdMopp6ioqEhXXnmlfYj6XXfdpT179uioo47SI488Yi/fvXt3XXLJJfb9GTNm6MEHH1RlZaX279+vESNGaMqUKdqwYUNCkz9z5syMn+gAAAAAAFq2rBr0Sy65RI8//rhKSkpUUlJiX7AglUWLFmnJkiXy+Xy68MILNXny5AYpOJOePXsmNMe1H4udgz5q1Cj7HHRJuv322/Xee+9p2bJlikQieuihhxKWbdeunRYsWKAjjjjCnta1a1c9/vjjuuiii1RdXa2NGzfqxhtvTFju4osv1tVXX91AawcAQDPA16wBAJBSVg36ypUrNWPGDH3wwQfatm2bJk6cqAsuuEDjxo1Tt27d5PP5tG3bNr3wwgtauHChpJpD4a+44gqtXLky7fOOGDHi8NaiAeTl5emFF17Qww8/rMcee0wbNmxQdXW1unbtqnHjxulXv/qVunTpkrTchAkTtHbtWt15551atmyZvvzyS7Vt21aDBw/W5ZdfrilTptSrHrfPfYBzfr9f3bt3JzND1DsvGgrXMMbMwhgzD2PMLORlFvIyj9tZZXUVd7/fn/Q1a+m+PqyuxxIK8PnqvKJfS1NRUaHCwkLXrhoI4Gu1/3799rfSLbe4UwsyS/V+Q8PnXfPnS7WPrHvqKWnSJHfqQWaMMQAthNv9WNYfD1iWZV8oLvb1Kan+xX9feKZ/SJbuawXgPZFIRO+88w6ZGaLeefG3yjWMMbOQl3nIzCzkZRbyMo/bWWV1iLukpL3imfaS1/U4zTmai7y8PLdLQBbIyzxkZpaMefH+7zmMMbOQl1nIC9nIukGnqW4aXPXdHIFAQP369XO7DDhEXuYhM7OQl3nIzCzkZRbyMo/bfVhWDfqll17aWHWgFs7LN0c4HNbrr7+uoUOHKhjM+jMvNDHyMg+ZmaXeebEDwDWMMbOQl1nIyzxu92FZ/ZbMnj27sepALRypYA7LsrRr1y4yM0S98yJf1zDGzOIoL7L0FMaYWcjLLORlHrez4nr/AAAAAAB4AA06ADjBJ98AAABoZDToAAAAAAB4QIM06LNnz9bIkSNVVFSkvLw8denSRRMnTtSTTz7ZEE8PAACaE45IAQAgpbQXidu9e7d++tOf2vfz8vL06KOPJnyvuWVZuuiii/TMM8/Y9yVpx44dWrRokRYtWqSHH35Y//znP3XEEUc01joAAADT0bQDAJB+D/qbb76pp59+WgsXLtTChQvl8/kSmnNJ+uMf/6h//OMfsixLlmXZ8/h8Pnva8uXL9eMf/7jRV6S5cfv79+BcIBDQoEGDyMwQ9c6L5sE1jDGzkJd5yMws5GUW8jKP21mlbdDfeecdSd/sFZ86dWrC44cOHdKsWbMSmvJ48Y36ggUL9NZbbzV07c2a38/lAUzh9/vVo0cPMjMEeZmHzMziKC8+8PIUxphZyMss5GUet7PK2KBLNYe3n3nmmQmPP//889qzZ48k2XvLa/+LN2/evIasu9kLh8NulwCHwuGwXnrpJTIzBHmZh8zMQl7mITOzkJdZyMs8bmeVtkH/+OOPJdXsCR8wYIBycnISHl+6dGnSMn369NErr7yizZs364c//KF92LskrVmzpiHrbvbc/uQGzvn9fvXv35/MDEFe5iEzs5CXecjMLORlFvIyj9tZpX312N5xqabxru0///lPwn2fz6c//elPGjZsmHr37q2HH35YxcXFkmr2sG/ZsqWham4R3P7FgHN+v1/FxcVkZoh658Uhua5hjJmFMWYexphZyMss5GUet7NK++p79+61934XFBQkPHbw4EFt2LAh4bzzgoICjR071r4fDAY1cuRI+1D38vLyBi28uQuFQm6XAIdCoZAWLVpEZoYgL/OQmVkc5UUz7imMMbOQl1nIyzxuZ5W2Qd+/f799u6KiIuGxt956S5FIRJLsw9iHDx+e9GlDx44d7dvRaLRBCga8yO1zVZCdeuVFQ+EqxphZyMs8ZGYW8jILeSEbaRv0/Px8STUN+MaNGxMee/HFF5PmHzZsWNK0yspK+3bbtm3rXSQAAAAAAM1d2ga9a9eu9u23337bbsr37t2rhx9+OOlr1UaMGJH0HNu3b7dvd+rU6bCLBQAAzQBHpAAAkFLaBv3UU0+1D1+3LEvjx4/X4MGDddxxx6m0tDRh3vz8/KQ96NFoVG+++ab9fei9e/dunDUAAAAAAKAZSNug/9d//Zd92+fzKRwO691331VZWZk9PdbA/+AHP0j6Grb//Oc/Ceexn3jiiQ1ZNwA0nlR799jjBzQuxhgAAOkb9JEjR2rcuHH2Vdhje8Jj/2LatGmj66+/Pmn5xx57TJLs5VOdow4AAAAAAGrU+SVvf//73zV06FBZlmU32jGWZSk3N1dz585NOF9dknbu3KknnnjCbuSDwaBGjRrVsJU3c8Fg0O0S4FAwGNSZZ55JZoYgL/OQmVkc5cXeck9hjJmFvMxCXuZxO6s6X719+/Z65ZVX9Ne//lVPPvmk3nvvPe3fv18dO3bU6NGj9ctf/lL9+/dPWm7hwoXq1auXff+kk05K+i51oDnJy8tzuwRkIWNeHOLuOYwxs5CXecjMLORlFvJCNurcgy5JgUBA06dP14oVK1RWVqbq6mp99tlneuyxx1I255J05ZVX6r333rP/zZkzp8ELb+74vkRzhMNhLV68mMwMQV7mITOzkJd5yMws5GUW8jKP21llbNDhDrcPrYBzwWBQ48ePJzNDOMqLPeiewhgzS73zYoy5hjFmFvIyC3mZx+2saNCBBlBVVeV2CcgCeZmHzMySMS+acc9hjJmFvMxCXsgGDbpHuX1oBZwLh8Navnw5mRnCUV7sQfcUxphZyMs8ZGYW8jILeZnH7axo0AEAAAAA8AAadACojb3lQONijAEAkBINOgAAAAAAHkCDDgC1cQ460PQYYwAA0KADAAAAAOAFNOhAA3D7+xKRnYx5sSfPcxhjZmGMmYcxZhbyMgt5IRs+y+Jd0ksqKipUWFio8vJyFRQUuF0O0DJVV0utWydO+5//ke6+2516kJnPlzyNtzfvevRR6b//O3Ha3LnSxRe7Ug4cYIwBaCHc7sfYg+5R0WjU7RLgUDQa1c6dO8nMEI7y4hx0T2GMmYW8zENmZiEvs5CXedzOigbdo9z+xYBz0WhU69evJzNDkJd5yMwsjvLiQzBPYYyZhbzMQl7mcTsrTojwKM5VMUcwGNTo0aPdLgMOOcqL5sFTGGNmIS/zkJlZyMss5GUet/sw9qB7lNuf3MC5aDSqTz/9lMwMQV7mITOzkJd5yMws5GUW8jKP21nRoHtUJBJxuwQ4FIlEtHbtWjIzBHmZh8zMQl7mITOzkJdZyMs8bmdFgw4AtXE4O9C4GGMAAKREgw4ATtBQAAAAoJHRoANAbTTjQNNj3AEN67HHpE6dpN69pVWr3K4GgEM06AAAoGnRjAONa/9+6YorpJ07pY8+kn72M7crAuAQDToA1EbzAAAw2b/+JR08+M39d991rxYAWaFB9yifz+d2CXDI5/OpY8eOZGaIeudF0+4axphZyMs8ZGYWR3lxxXDPYHyZx+2s3P0WdqQVDBKNKYLBoIYPH+52GXDIUV40457CGDMLeZmHzMxCXmYhL/O43YexB92j3P7+PTgXiUT0wQcfkJkh6p0XTbtrGGNmcZRXqvHEGHMNY8ws5GUW8jKP21nRoAMNoKqqyu0SkIWMedEoeA5jzCzkZR4yMwvvY2ZhfCEbHEftUYFAwO0S4FAgENDgwYPdLgMOkZd5yMws5GUeMjNLvfOyLInzoJsc48s8bvdh7EH3KLcPrYBzkUhE77zzDpkZwlFe7HnwFMaYWRhj5mGMmaXeY4xx5wrGl3nczooG3aOi0ajbJcChaDSqbdu2kZkh6p0XGzauYYyZhbzMQ2Zm4X3MLIwv87idFQ06ANTGRgzQ9Bh3AADQoAOAIzQPAABTcIg7YCwadACojY0YoHExxoCmx7gDjECDDgAAADR3NOiAEWjQAcAJNmwAAKbgEHfAWDToHuX3E40p/H6/+vbtS2aGcJQXGzaewhgzS73HGFzDGDMLeZmFvMzjdlZBV18daQUCAbdLgEOBQED9+vVzuww45CivVM2Dz9c4BSEjxphZ6p0XTbtrGGNmqff7GGPMFYwv87jdh/FRjkeFw2G3S4BD4XBYr776KpkZwlFebMR4CmPMLORlHjIzS73z4r3NFYwv87idFQ26R7l9aAWc8/v96tKlC5kZgrzMQ2ZmIS/zkJlZ6p0XDborGF/mcTurZvmbUlpaqvvvv1+TJk1S//791aFDB7Vq1UqdOnXS+PHj9cwzz6RcLhKJ6MEHH9Tpp5+u9u3bKy8vT3369NGMGTO0Y8eOtK/34Ycf6rLLLlPPnj2Vm5urDh06aMyYMZo/f36918HtXww45/f71aNHDzIzhKO82IjxFMaYWRhj5mGMmYW8zEJe5nE7q2b5mzJ37lxdddVVWrBggTZs2KCysjKFQiHt3LlTzz//vC644AJNnz49YZmDBw9q/Pjxmj59ul555RXt27dPBw8e1JYtW3Tvvfeqf//+evPNN5Nea/HixRo4cKAeeeQRffrppzp06JDKysr04osvavLkyZo2bZqsemyIuH1oBZwLh8N66aWXyMwQjvKiefAUxphZyMs8ZGaWer+P8d7mCsaXedzOqlk26DFdu3bVT37yE/3+97/XJZdcomDwm2viPfjgg3rxxRft+zfccINKSkok1VwY4PLLL9eNN96o7t27S5L27Nmjiy66SAcOHLCXKS0t1dSpU3Xw4EFJ0gknnKBbbrlFU6ZMseeZM2eO7r///qxrr09TD3dYlqXKykoyM4SjvNiw8RTGmFnqnRf5uoYxZhbex8zC+DKP21k1y6u49+jRQ/PmzdOkSZMSrsI3duxYXXLJJfb9559/Xmeffbb27t2r++67z54+c+ZM3XbbbZKkqVOn6vjjj5dlWfrkk080d+5ce+/7vffeq/LycklSfn6+Vq1apaKiIkk1h0bMmzdPkjRr1ixNnz7d9SsCAgAAoIWiQQSM0Cz3oP/gBz/QD37wg6SG+Pzzz0+4f+jQIUlSSUmJvRdcki688EL7dt++fdW/f3/7/rPPPpvy9qhRo+zmvPZzlJaW6q233qrn2gBocnzNGtC4Uo2x/fubvg6gJaFBB4zQLPegp7Np06aE+6eccookad26dQnTe/XqlXT/vffeS5i3uro64flSLRNv3bp1Gjp0aFJN1dXVqq6utu9XVFRIkkKhkEKhUNL8fr9fgUBAkUhEUs3h+OFwOO2hGIFAQH6/X+FwWH6/X36/P+XzxsROAwiHwwm308nJyVE0GlU0GlUwGFQ0GrVrq83n8ykYDCbUHolEFI1GU84fW9f42p2saygUclR7/Dyx9chUe/y6xmqP/Tzjf67k5L2cYuLzSpvToUPKqfXckWhUvmiUnBysa0PkFC/2PJFIJGE94muvnVesFnJKv64NnVPt8RR7nVS1+yMRJR1TNn++Qlde6ah2ckquvb45xdZDUspxEqs9lVTzk1Pj5mRZVsrtjqTtiBTPGQqFpK+XIafGzykmPi+297ybU7x0z9NUWkyDfuDAAf30pz+17x933HGaNGmSJKmsrCxh3oKCgoT7+fn59u3du3dLkvbu3ZsQal3LxC9X26xZs3TzzTcnTV++fLnatGmTNL179+4aPHiw1q1bp7y8PPXr10+vv/66du3alfL5Bw0apB49emjlypXq37+/iouLVVJSknaAnHnmmcrLy9PixYs1fvx4VVVVafny5SnnDQaDOu+887R7926tX79eo0eP1vbt27V27dqU83fs2FHDhw/X5s2bVVVVZa/Htm3bUs7ft29fe/26dOlir0dlZWXK+YcNG2av3xlnnGGvRzqx9Vu1apW9HqtXr045b35+vr1+paWl9nrEf0izdOlS+zY5eTenmKVLl6bNqWLTJp1ba/5tn3wi//bt5JRGY+Uk1VxPRJI2bNigtm3bphxP302xHDkla8ycYuNpw4YN9rR0f/d6rl+vgbUnvvIKOX2tKXKK/7v39ttvS0p8H4uJvT+lkmodyKnxcqo9nuLzStqOSPGcJUuWKNy2rSRyasqcYpYuXcr2ngE5SVLPnj3T1tkUfJbbZ8E3gV27dmnixIl67bXXJEmdOnXSypUrddxxx0mSrrjiCj300EP2/OFwOOHw+IsvvliPP/64JKl169aqqqrSjh071LlzZ3ueG264Qbfeeqt9f8uWLerTp499/4477tDMmTOTaku1B71bt27asWOHjjzyyKT52TPrvU/qQqGQli5dqjFjxignJyehdnJKv65u7kGP5ZWbm5s6p9JS5dT64xy54gr57r+fnBysa2PsQV+yZInOOecc5eTkpN6D3qpV0nLhr4+SIKfU69pYeygOHjyoJUuWaPz48fL5fKn3oP/lLwr8v/+XND309alnmWonp+TaD2dPUlVVlUpKShLex2rXnuo0n1R5kVPT7EGvvd2RtB3x8MPSFVckPGdo506pXbuk2skpufaG3oMey6t169ZsRzhYV7f3oO/bt0/FxcUqLy9P2gnbFJr9HvTNmzdr3Lhx2rp1qySpW7duKikpsZtzSUmNcGVlpdp9/QdM+uawc0n2eeZFRUUJGx61Pz2KXyZ+udpyc3OVm5ubNL1169ZJb5Lx4j9AiP1C1yV+nrqeN9U8meaPDdLat9OJrz0QCGS8eF587U7WNZva4+dxUnv8PLHaA4GAhg0bZv/RjUdO6TV1TjGp8krKKUX9Ab9f+np+cso8/+HmFC+WWatWrez5GU+JvJBTTKtWrTRs2LA6D41Wmucgp9TzN0ZO8Y/n5uamfR9zUl+mx8jpG4eTU6z2urY77PVL0XjkBINSrfUhp9QaIqf4x2rnxftT5vmbOqd0NbuhWV4kLuaVV17RsGHD7OZ80KBBWr16tfr165cw34ABAxLux+ZPdT82b25ubkKTX9cyqV4jk2zeIOEuv9+v4uJiMjOEo7ya/4FFRmGMmYW8zENmZiEvs5CXedzOqtn+pixYsEBnn322fX75+PHjtWrVKnXp0iVp3rFjxybsxX766aft2xs2bNDGjRvt+xMnTrRvT5gwwb69YsWKhHPZ58+fb9/u3LmzhgwZklX9dR3uAm8JhUJatGgRmRmCvMxDZmYhL/OQmVnqnRcfPruC8WUet7Nqloe4L1iwQJMnT7YPPy8uLtaIESP0l7/8JWG+bt26afLkySoqKtKVV16pe+65R5J01113ac+ePTrqqKP0yCOP2PN379494XvUZ8yYoQcffFCVlZXav3+/RowYoSlTpmjDhg0JTf7MmTMzHnJRm5NDRuANwWBQZ5xxBpkZwlFebMR4CmPMLIwx8zDGzFLvvBh3rmB8mcftrJrlb8qGDRsSTvrfuXOnfvWrXyXNN3LkSE2ePFmSdPvtt+u9997TsmXLFIlEEi4aJ0nt2rXTggULdMQRR9jTunbtqscff1wXXXSRqqurtXHjRt14440Jy1188cW6+uqrG3L14EF5eXlul4AsZMwr1UYMGzauYoyZhbzMQ2Zm4X3MLIwvZKPZHuKerby8PL3wwgt64IEHNGzYMBUUFCg3N1e9e/fW1VdfrfXr16f8HvMJEyZo7dq1mjZtmrp166ZWrVqpffv2Gj16tJ544gnNnTu3Xucx1HWVQ3hLOBzW4sWLycwQjvJiI8ZTGGNmIS/zkJlZyMss5GUet7NqlnvQb7rpJt10001ZLxcMBjV9+nRNnz49q+X69eun2bNnZ/16AAC0SKk+BIu7xguARsCHz4AR2IMOALWl2ohJ8R3AABrQwIFuVwA0bzTogBFo0AGgNs7dA5oeYwxoOLyPAcaiQQcAAO6jeQAaDg06YCwadACojY0YoHHRPAAAkBINOgDURqMAND3GHdC4GGOAEWjQPSoYbJYX2G+WgsGgxo8fnzmzaFT6+GOpvLxpCkNKjvJiI8ZTHI8xeIKjvNasabqCkBFjzCz1zov3NlcwvszjdlY06EADqKqqqnuGcFiaMEHq1Uvq3Vt65ZWmKQwpZcwLnkNmZsmY1+OPJ0+jeXAVY8ws9cqLMeYaxheyQYPuUeFw2O0S4FA4HNaqVavqzmzpUmnx4prbZWXSNdc0SW1I5igvNmI8xVFm8Ix658W4cw1jzCy8j5mF8WUet7PiWAuPysnJcbsEOJSTk6Pzzjuv7pn++MfE+2++2XgFoU6O8uICVp7iKDN4Rr3zYoy5hjFmFsaYWRhf5nG7D2MPukdFo1G3S4BD0WhUO3furDszPnDxDEd5sRHjKY4yg2fUOy/GnWsYY2ZhjJmF8WUet7OiQfeoSCTidglwKBKJaPXq1XVn5meoeYWjvFLx+RqnIGRU78zginrnRfPgGsaYWRhjZmF8mcftrOgagKZAc2cWDnEHmh5jDGg4vI8BxqJBB4Da2IgBAJiMBh0wFg060BTYgw4AdaN5AACABh1oEjToZmHPA9D0GGNA42KMAUagQQeaAg26WdiIAZoe4867yKZ5IEfACDToHuWjoTOGz+dTfn4+mRnCUV5sxHgKY8wsjvLq3j15GuPONRkz4+uhPKXefxMZY67gPcw8bmdFg+5RwWDQ7RLgUDAY1OjRo+vOjD/KnuEor1TYsHFNvTODKxzldc45ydMYY67JmBlfD+UpvI+Zhfcw87idFQ26R0X5tNoY0WhUn376ad2Z0aB7hqO8OAfdUxxlBs9wlFerVsnTvvyy8YpCnTJmxtjzFN7HzMJ7mHnczooG3aPc/sWAc9FoVKWlpTTohnCUFxs2nuIoM3hGvcfYU081XlGoU8bMGHueUu+/ibyPuYL3MPO4nRXHWniU24dWwLlgMKjhw4e7XQYccpQXGzGewhgzi6O82FD1lIyZkZen8DfRLFnldfCgVFEhdezIzh0Xud2HsQfdoyKc72WMSCSiDz74oO7M+CPrGY7ySoWm3TX1zgyucJQX48lTMmZGg+4pvI+ZxXFeb74pHXOM1KmTdNFFjDsXub29QYPuUW4fWgHnotGoNm3axCHuhnCUF4e4e4qjzOAZ9R5jcE3GzBh7nsL7mFkcv4fdeaf0xRc1txculJYsafzikJLb2xs06EBToEE3Cxs2QOOi4TMLeTUPvI9529NPJ96/5RZ36oDraNABwAk2bICGw3gyCw26efig2Xyc1tVi0aADTYE96GZhIwZoXKtXu10BskGD3jzw3mYW8mqxaNCBpkCDbhb2PACNa+NGtytANtiTZx7ex8xHXi0WDTrQFGjQzcKGDQB8gz3o5uE9y3xk2GLRoHuU3080pvD7/erevTuZGcJRXqk2RnmjdA1jzCzkZZ6MmdGge4qjMcYHzZ5R77+J5OUat9+/3P0WdqQVCATcLgEOBQIBDR48uO6Z2IPuGY7ySnU4J2+UrnGUGTyDvMyTMTMadE9xNMZo0D2j3n8Tycs1bvdhfLztURHO9zJGJBLRO++8U3dmqRp0/vC6wlFejD9PcZQZPKPeebVt2zgFIaOMmdGge4qjMUaD7hn1/ptIXq5xe3uDBh1oAHl5eXXPkKpBZ4PHNRnzYg+652TMLJWDBxu+EDhSr7wOHGj4QuBYnZnxfuU5GccYDbqn1OtvIlosDnH3KLcPrYBzgUBA/fr1y37BaFQi5ybnKC8adE+p9xg7dEhq3brhC0Kd6p0XXJMxMxp0T3E0xmjQPaPefxPJyzVu92HsQfeocDjsdglwKBwO69VXX607M/age4ajvGjQPcVRZqkwxlxR77zgmoyZMZY8xdEY42KnnlHvv4nk5Rq3379o0D3KYlAaw7Is7dq1q+7MaNA9w1FeNOie4iizVBhjrqh3XnBNxsy4/oOnOBpjjD/PqPffRDJ0jdvvXzTogFtoHryLBr15oKkAGgbvV+bhEHfzkVeLRYMOuIUNHu+isWseGGNAw0j3N5EGwrto0M1HXi0WDbrJPvlEWrmy5kJI8DYOcTcLe9CbB8aYNzGWzMPXr5mHBt185NVi0aCb6vnnpeOPl0aOlE47jSbdRGzYeBcNevPAGPMmxpJ50jXobHt4Fw26+cirxaJBN9VVV33zHb/vvCPNm+duPcgezYN30aCbJV02jDFvqisXMvOmdA36pk1NWweco0E3H3m1WDToHpXx+/c+/jjx/uzZjVcM6hQIBDRo0KDsvzORDVFXOMqLBt1TMmbGlac9JWNedf3te/31xikKdcqYWbqxFAw2XlFIy9H7GA26Z9R7O5G8XOP296Dzl9Wj/P4sPzsJhRqnEGTk9/vVo0ePumfiHHTPcJQXjZ2nZMyM82M9pd55SdJXXzV8QcgoY2alpamn5+Q0TkGok6P3MRp0z3CUVyrk5Zqs+7CGfn1XXx1phcPh7BbgPDDXhMNhvfTSS9lnRvPgCkd5sQfdUzJmlm4sMcZckTGv115LvzDjzBUZM/u//0u3YOMVhbQcvY8xljyj3tuJZOiarLNqYDToHuX2Jzdwzu/3q3///tlnRvPgCkd5pfrDzBulazJmlm6PLEdCuCJjXu+8k35hMnNFxszOPjv1dBp0Vzh6H2MPumfUezuRvFzjdh9GF+hRDGJz+P1+FRcX150Zh7h7hqO82IPuKRkzSzeW3nij8YpCWo7GWDpvvdXwBSGjjJn16ZN6Oh+ouMLRGEv1d5H3MVfU+28iebmGBh0phTin3BihUEiLFi3KPjMadFc4yosG3VMyZpauSfjnPxutJqSXMa8vv0y/8M03N05RqFPGzNJNr65uvKKQlqP3Mfage0a9txPJyzVu92E06M0Fg9hV9TpXhQbdNRnzYq+Q59SZWbpzmgsLG6cYZFRnXvfem/4xxp5r6sws3cbqyy83TjHIKOP7GA26p7CdiGzQoANu4Q+vd7EH3SzprjB97rlNWwecOXgw/WOc0+xN776bevrf/960dcA5GnTzkVeLRYPeXDCIvY1z0M1Cg26W449PPZ2LbQINY86c1NNPPbVp64Bzqd7H3n676esAkDW2XgC30KB7V6oNm+efb/o64Ey6D0+++KJp6wCaq8rK1NMHDmzaOuBcqvex/+//a/o6UH/sGGixaNABt9Cge1eqDRvOjfWudIdMP/xw09YBNFfHHJN6+uOPN20dcC7Ve9b3v9/0daD+2E5ssWjQAbfwh9e7aMbNsmhR6ulr1zZpGUCz9fHHqae//nrT1gHnUn1wOWBA09eB+mMPeotFg+5RwWAwuwUYxK4JBoM688wz684sVT406K5wlNeaNU1XEDLKmNkf/9i0BaFOjsZYXXg/a3KHnRmalKO8HnooeRoXYXRFvbcT+VvoGrf/FtKgAw0gLy+v7hlSfUUNDbprMub17383TSFwrM7Mzjqr6QqBI2nz+uyzzAvv3t2wxcCRjH8X4Sn1yosG3TUZ8+LitIhDg+5RWX9fIoPYNeFwWIsXL647s6qq5Gk06K5wlBc8JWNmGzY0bUGoU515/e1vmZ9g5syGLwp1qjMzti88p97vY3v2NE5BqFO9txNbtWq8olAnt7cRfZbFX14vqaioUGFhofbt26fCwsL0M9b+2q4BA9J/TykalWVZCofDCgaD8qX6OjVJGj8++Srgb74pnXxy4xeIBI7ySjd9zx6pffvGKw4pZcwsXV41CzdeYUipzrzqyirxSRq+MKRVZ2ZffSW1bVvXwo1bHJLU+33shBP4QNMFjvLauVPq1ClxWp8+0ocfNn6BSFJeXq527dqpvLxcBQUFTf767EEHGkBVqk8+E2dInsYedNdkzCuddFcLR6Ord2ZwBXmZJ21m//hH3Qum+wo2NKp6jbGNGxu+EDhSr+1E9qC3WDToHsUh7uYIh8Navnx59ocucaVwVzjKK50332z4gpDRYWVGo9jk0ua1f7/zJ+E89CZV5xi75pq6F+a7tZvcYf1NRJOr93ZiTk7jFYU6uT22aNBNlKoZDwSavg4499VXydPYg+5Nhw6lf+zXv266OuDMjh11P+7knGc0jfx85/N27Nh4dSA7ZWV1P/673zVNHUBzlqpBd3pKEJodGnQTpboiOJ+yeVuqP7x88u1NdX13Nufuec8Pf1j34z/7WdPUgbp99FH2y3zwQcPXgexwdJ6ZUm0nwts4FRJxaNBNlOo8WPage1uqP7z/+U/T14HMTj3V7QqQjRdfdLsCZPLRR1Lv3qkfO/VUaeLE1I8dfzwXSHKb3+FmYqbD4NG01qxxuwJkK9V2IqdotVg06A3kww8/1GWXXaaePXsqNzdXHTp00JgxYzR//vyGf7FUDfprrzX866BhWFbqcy//+c8mLwUNwMn3OKNpXHyxs/k4TNAd1dU1P/t0zbkkrVolPfNM+sf79q15jurqhq8PdbvuutTTU51+8Kc/1WQJbxg9Ov1jb7/ddHXAuVTNOB9Qtlg06A1g8eLFGjhwoB555BF9+umnOnTokMrKyvTiiy9q8uTJmjZtmhr02+z27m2450Lj++ILqbw8efobbzR9Laibk0auWzcOH3RbJFKT1eOPO1/G52NvRGOLRqWZM5XTqpW+e/75ynFyznlOjrO9tK1b12To89VcC4JThBrP00/X/Jzvvjv14198kXr6iBE1y73/fuPVhswsq+73KL7e1ZtqfxVvDIe5t0g06IeptLRUU6dO1cGv92qfcMIJuuWWWzRlyhR7njlz5uj+++9vuBfdsqXhngsNIhgMpn+wc+f0j2VzVWM0GDuvigrpu9/9ZsPfqVatvlmGT7gbj2VJpaXy/+xnNQ1f7Ode13irK482bb7JzeeTvv1t/p7WJXb0z/vv13wYMnly4s+v9r9AQPrDH5w/f/yGZzbfanHHHTWNfV21TJgg/f3v0ubNNR/McC71NyIRadu2mr3eX/+87A9VWrWSLroo/bJXXJH5A5UTTkjOo7hYWriw5m8uWTSIpO2OSKTmlBEnH3j5fNKjjzZKXUitzu1ESUrXJ9xxR8MXA8/zWQ26a7flmTlzpv7w9QZJfn6+PvnkExUVFUmS/uu//kvz5s2TJHXp0kWffvqpAhnOFa+oqFBhYaHK331XBW3a1BzOXl1dcxXwH/5Q+uSTzEUFAjWfxB15pNS2bc3GbG5uzcZQIFDzh9myvvkjXrs5SXU//v/DFfuVq/18qX4VLeubjfFotOZf/H3LqlmnSKTmX+3niN2Pnx4/LdX8sY3G2PPHXjf2L/Za4XBNPocO1WR08GDNxuyll2b386htzhypffuazFq1qvk/J6dmvf3+mn+xHGMZ5uTU1BT73+//Zj2yya32zyMY/GbD2eerWedg8Jv/Yz/z+MdCoZr6Yj+vQKBmWuyx+OeKqa7+5mdtWTXPG1vesqS//lV68sn6/Tybm2Cw5vci/l8wKG3fLp19tnTzzTU/31g2fv83P9tFi6RZs9xeg8ZlWTWNOHvLve2LL6ROnRKn7d7N1du9Lv790+n56aa4/Xbp9NNTv2dm2lSu6/G6Hquqki68MPU3vZgoN1c67TTplluko45KfCzVzyEnp+ZfbHss1fZZbu43262p/tVWO79UecaeL9X/dYmvz+f7Zjsrti0a2y4KhxO3Saura+7v2VNzatbnn9f9Ok5861vSAw9IeXk1//z+mteP3z6MbYvFtg3jt+9TbdvX/hmk+9mlkulnF/sZZ7ucU/G1pxtz8dPj64n9H9vmtCxV7N2rwhNPVHl5uQoKChqmxizQoB+m448/Xh98faXZCRMm6Nlnn7Uf+8c//qELL7zQvr9mzRoNHTq0zuezG3RJTf/rACDBBRdIDz5I02CKaLThP1BEwwuH01/YNPahHryn9uZiJFL30SwAYKgKSYWSaw16M/v4s2lVV1dr06ZN9v1evXolPF77/rp161I+R0VFRcI/AI3LctC8RU87TaEnn1SosFAhLsLoeaFDhxQKhxUKhRT9+lNwKy/P7bIQJ7R+fU1O0eg3OUkKh8P27VAkUjMPX2noGdavfy1ZVmJOoVBNjocOKXrWWS5XiLpEbr/d7RIAZImPPg/D3r17Ey7+VvsTlvxaF8jZvXt30nPMmjVLN998c+MUCM958b77dPZVV7ldRovny3Dg0L+fekqR3Fxp8eJvJj7zjL5z+eUKpBjHcMfB9u215JFHavaWx2U1aNAg9ejRQ8v//W/1799fxVdcwbcmuOT1RYu0I3Zqy5YtCef8x3JauXJlTU7FxSopKVE4dvrL15m1Ki/XuMM9dQhZe3bBAlk5OTU5Selz+tnPpJ/9TMGvvtJ5U6e6WjMSvfqHP2jXccdJ//ynBt5/v3qWlLhdEgAHOMT9MOzYsUOd4y4AdsMNN+jWW2+172/ZskV9+vSx799xxx2aOXNmwnNUV1erOu7rYyoqKtStW7eEQ9ytnBz50l2R84svks/zQaOyfD75AgFZsXN9cnMVadVK/rZt5QsG5Ys7qsK2cKHCEyd+84HOwYPKqeuQme7dZR069M357aGQFInIl82FlDwuthc71ixbfn/iYcmBwDfn3Pt88h040Gi1RF56STrjDAWCQYXD4bTfuhAIBOT3+xUOh+X/5BP5p0715NX4rdj5aPHnwEUi8hl85euyW29VwfTp8rdvr0Ag4Dwnv19+v1+h+L+hhw7J99xzCvz0p/LxrRhZs3r2lHXGGYqOHSvr3HOlwkJJkt/vVyAQUCgU0meffaYePXooGo3WP6daYhdZCofDCbdVVibfiy/Kt3Kl/C++KN/HHzfwGjdP1kknyfrFL+QfN06H8vL02WefqUuXLvLXOrf8sHPas0fRhx+W/7e/Tb8t4xGWzydfYaFS/sZmOPLK5/OlXi5uWZ9kz+OTpLKy+pRZp+ikSdLjj8sfDKbOKRRScOBA+RrxAplWINCstlcaktW+fdr3HatVK4UrK2t+X774Qjndu2d+vrp6BNSb24e4swf9MBQVFdX8Qf5646OysjLh8dqHq8cuHhcvNzdXubm5SdNDn35ac9XTVq3ky3QhlnSfsYTD31yoorr6m4upRaPfXDhK+uaiCKmeL/6iaZlez6lszg2NXewqrlFTOPzN/Vjt8Y/Xfp26psUumBF/4bpUVyaOXWzD75cv7o1WqjnUb/HixRo/frxycnLSrkrCYItdFKWuVU/3QPzF1GL/Dh785uJt8etW36ziL8gS+znELtAXuxhc7HzfWCOYk/PNY7HXjV0YrlWrb3L8+rkTfq99vpr1bYLzhlPlFX/Ga8YrrcbmOfZY6fXXG6nKw9Pczr4OhUL6z+LFGl9YaF9o03FOX0sYmzk50pQpNf+QNd/X/+p6Z1q3bp26du1a59/EmLQ5pRE/T05OTs2H1BdfXPMPjsVylCRfKKT33ntP3bp1S5tBvXM68kgFZs6Uau2g8CJfrf/ru/zhzpNJXdsd8eMyZU45OTXfbtDQ4i645Uv31WC13+MPHvzm4mWxx2tvp1VV1f2NDbUv3Jbufl01O1W7/ti2tN9fs/0Tf7G42AXafD6FfL6avM47r+abEtI9vSQ7sW7dHF2c0Ofz1WxnxS6wG9vOj02Pv1Bv/M8m9gFK/GvEtsvSXbS5jjocaep9wnVd0C62TRq/nRvXS4TKy6VjjmnaeuPQoB+G3NxcHXfccfZ56Fu3bk14vPb9AQMGOH/ytm1rvvf1cASD31zApW3bw3sueEfsQ4N4dfzBb1IpPmyyfwe58BMAAM1TfGPt9Ar/TrZN27Spf01eEQol70RqCLHnc/CBGbLk8vfPc5G4wzRhwgT79ooVK1QWd7jS/Pnz7dudO3fWkCFDmrQ2AAAAAIA5aNAP04wZM+yLwe3fv18jRozQrbfeqilTpujpp5+255s5c2bG70AHAAAAALRcHOJ+mLp27arHH39cF110kaqrq7Vx40bdeOONCfNcfPHFuvrqq12qEAAAAABgAvagN4AJEyZo7dq1mjZtmrp166ZWrVqpffv2Gj16tJ544gnNnTs36aqoAAAAAADEYw96A+nXr59mz57dYM/na4KrWaNh+Hw+dezYkcwMQV7mITOzkJd5yMws5GUW8jKP21nxPegeU1FRocLCQte+dw8AAAAAWiq3+zGOu/aoSOz7CeF5kUhEH3zwAZkZgrzMQ2ZmIS/zkJlZyMss5GUet7OiQQcaQFVVldslIAvkZR4yMwt5mYfMzEJeZiEvZIND3D3G7UMqAAAAAKClcrsfYw+6R7l9aAWci0Qieuedd8jMEORlHjIzC3mZh8zMQl5mIS/zuJ0VDbpHRaNRt0uAQ9FoVNu2bSMzQ5CXecjMLORlHjIzC3mZhbzM43ZWNOgAAAAAAHgADToAAAAAAB5Agw4AAAAAgAfQoAMAAAAA4AFBtwtAoti33lVWVionJ8flauBEKBTSV199pYqKCjIzAHmZh8zMQl7mITOzkJdZyMs8lZWVkr7py5oaDbrHlJWVSZKOOeYYlysBAAAAgJaprKxMhYWFTf66NOgeU1RUJEnatm2bK78QyF5FRYW6deum7du3q6CgwO1ykAF5mYfMzEJe5iEzs5CXWcjLPOXl5erevbvdlzU1GnSP8ftrLgtQWFjIIDZMQUEBmRmEvMxDZmYhL/OQmVnIyyzkZZ5YX9bkr+vKqwIAAAAAgAQ06AAAAAAAeAANusfk5ubqd7/7nXJzc90uBQ6RmVnIyzxkZhbyMg+ZmYW8zEJe5nE7M5/l1vXjAQAAAACAjT3oAAAAAAB4AA06AAAAAAAeQIMOAAAAAIAH0KA3kAMHDmjevHn6yU9+opNPPlmdO3dWq1at1K5dOw0fPlz33HOPDh06lHb5pUuXauLEierUqZNyc3PVpUsXTZkyRW+++WbaZfbt26cbbrhB/fv3V9u2bVVQUKCTTz5Zf/jDH3Tw4MEGfa3mas2aNfrFL36hM888U4WFhfL5fPa/FStWpFxmxYoVCfOl+nfsscemXJbMDk998ophjHnLqFGjMo6jv//97ymXbcos4dyHH36oyy67TD179lRubq46dOigMWPGaP78+W6X1qxlGkc+n0+fffZZwjKRSEQPPvigTj/9dLVv3155eXnq06ePZsyYoR07dqR9LTJ2ZsGCBZo+fbqGDBmi3NzchCzSacpM6vtazVm2md10000Zx92Pf/zjlMuS2eEpLS3V/fffr0mTJql///7q0KGDWrVqpU6dOmn8+PF65plnUi5n1Biz0CBWr15tSarz3ymnnGJVVFQkLfvb3/427TJ+v9/661//mrTMRx99ZPXo0SPtcoMHD7Z2797dIK/VnM2YMSPtz2P58uUpl1m+fHnGrHv37p20HJkdvvrkZVmMMS8aOXJkxnE0d+7cpOWaMks4t2jRIqt169Zpf8aXXnqpFY1G3S6zWco0jiRZ27dvt+evqqqyxo4dm3beoqIi64033kh6HTJ2buDAgWl/Tqk0ZSb1fa3mLtvMfve732Ucd5dddlnScmR2+GbNmpXxZ3/FFVckLGPaGKNBbyCxBj0/P9+aNGmSdcstt1gzZsywioqKEkK5/vrrE5Z77rnnEh4/99xzrd///vfWsGHD7GnBYNBau3atvUwkErGGDh2aEPSvfvUr65prrrHy8vLs6d///vcP+7WauxkzZlidOnWyxo8fb02dOjXh5+OkQR8yZIh11113Jf17+OGHE5Yhs4ZRn7wYY94U36D/5je/STmONm7cmLBMU2YJ5z777DOrsLDQ/lmecMIJ1i233GJNmTIlIa8///nPbpfaLMV+vu3bt085ju666y6rsrLSnv/aa6+1lwkEAtbll19u3XjjjVb37t3t6T179rT2799vL0PG2Rk0aJDVu3dva/LkyUkfRqbSlJnU57Vagmwzi2/QJ0+enHLcLVmyJGEZMmsYsQa9a9eu1k9+8hPr97//vXXJJZdYwWAw4ee4dOlSexnTxhgNegNZt26d9fvf/94qLy9PmL558+aET15OOumkhMfjNxy//e1v29Orq6utY445JmHwxyxevDjhF6OkpMR+7KGHHkp47P333z+s12ruvvrqK/t27T3jThr0Sy+91NHrkFnDqE9ejDFvit8A+vjjjx0t05RZwrlf/vKX9s8wPz/fKisrsx+L/yCtS5cuVjgcdrHS5in28+3Ro0fGeffs2ZOwTfKb3/zGfuyDDz6wfD6f/dgDDzxgP0bG2Yl/r6q9p7W2psykvq/VEmSTWe15Zs+e7eg1yKxhzJs3z5o3b17S35q5c+cm5PY///M/lmWZOcZo0JvAySefbIfRv39/e/oXX3yR8It09913Jyz3s5/9zH6sbdu2ViQSsSzLsqZPn25PLygoSDi0oqysLOE577zzzsN6rZakPg16UVGRdeSRR1o5OTlWp06drAkTJljPP/980jJk1vCc5MUY8674Br1nz55Wbm6u1bZtW2vAgAHWb37zm6RDzpsyS2SnX79+9s9wwoQJCY8tXLgw4We8Zs0al6psvmI/29zcXKtr165WMBi02rVrZ51++unW/fffb4VCIXveJ598MiGPt956K+G5TjzxRPuxcePG2dPJuP4yNXtNmUl9X6ulybZB79Kli9W2bVsrNzfXOuaYY6wf/ehH1oYNG5KWIbPGVVlZmfCzuvrqqy3LMnOMcZG4RlZdXa1PP/3Uvn/KKafYt9etW5cwb69evdLeP3DggD766KOk5Y455piEC1gUFRWpsLAw6TXq+1qo2549e1RWVqZQKKQvv/xSzz33nMaNG6df/vKXCfORmTsYY2b45JNPVF1drQMHDmjdunW6/fbbNWDAAG3evNmepymzhHPV1dXatGmTfb+uXCR+xo2purpan332mcLhsPbt26f//Oc/+ulPf6qzzjpLVVVVkrIbR7F5ybhxNWUm9XktZFZaWqoDBw6ourpaH3/8sR555BGddNJJ+sc//mHPQ2aNL/7nK33Tc5k4xoJpH2mhtmzZonA47Hj+7t27q02bNmkfv/baa7V7925JUuvWrXXdddfZj5WVlSXMW1BQkHA/Pz8/4f7u3bt17LHHJixXe5nYcuXl5fYyh/NaJmjozJwIBAIaMWKETjzxRHXo0EEbN27UggULFIlEJEl33XWXRo0apfHjx0sSmcVpyrwYY43rcLPs3LmzzjrrLB1zzDH66quv9Oyzz+rDDz+UJH3++ee6+OKLtWbNGklNmyWc27t3ryzLsu87yQUNb8CAATrttNPUtWtXffHFF5o3b5727dsnSVq5cqV+97vf6Q9/+ENW4yiWFRk3rqbMpD6vhfSOOOIIjRkzRn369FFubq5WrVplf6NMdXW1Lr30Up1++ukqLi4ms0Z24MAB/fSnP7XvH3fccZo0aZIkM8cYDXotp512WtIPty7Lly/XqFGjkqZHIhFdddVVevDBByVJwWBQjz/+uE444QR7nvjgndyP7fmJn157ntrTUi2TzWuZoKEyc2rAgAH6/PPPVVxcnDB92rRpGjdunP2znD17tt2gk9k3mjIvxljjOpwsH3roIfXp0yfh53D77bdrzJgxevnllyVJr7/+ujZs2KBvfetbTZolnGuJv/de8/7776tfv34J066//noNGjRIu3btkiQ9+uijuvPOO7PKqyX/bWtKTZlJfV4Lqf33f/+3Zs6cqby8vITp119/vW6//XZJ0v79+7VgwQJdddVVZNaIdu3apYkTJ+r111+XJHXq1EnPPfecWrduLcnMMcYh7o1g//79mjBhgt2c5+bm6qmnntIFF1yQMN+RRx6ZcL+ysjLhfkVFRcL9oqKipOVqL1N7uVTLZPNaSFZUVJTUnEvSOeeco759+9r3N27caN8mM3cwxrzruOOOS3pzysnJ0ZVXXpkwLTaOmjJLOFdUVJSQI7/3Ta92cy7VHJ1y4YUX2vd37dql3bt3ZzWOYlmRceNqykzq81pIrUePHknNuST9v//3/xLux97DyKxxbN68WcOGDdNrr70mSerWrZtWrFih4447zp7HxDFGg17L7t27ZdVcPM/Rv9p79nbs2KGRI0fq+eefl1Tzw1+6dGlScy7V7ImNt3Xr1rT327Ztq969eyct9/HHHyd8GrNr166EX4bYvPV9LRMcbmYNKT4Lv/+b4UVm32jKvBhjjasxsqz9aXNsHDVllnAuNzc3YUOorlwkfsZNKdVYymYcxeYl48bVlJnU57VweGLvYWTW8F555RUNGzbM/hkMGjRIq1evTvrQ0sQxRoPegDZs2KDTTjtNb7/9tiTp2GOP1erVq3XGGWeknP+oo47SkCFD7PsLFy60bx88eFDPPfecff+8886zB/mECRPs6RUVFSopKbHvz58/P+E1YvPW97WQ7IYbbtB7772XNL2kpMQ+f1aS+vfvb98mM3cwxrxp1apVuu+++3Tw4MGE6aFQSH/5y18SpsXGUVNmiezE/9xWrFiRcNpD/M+4c+fOCRni8P31r3/VokWLkprxzz//POECVUcffbSKioo0duxY5ebm2tOffvpp+/aGDRsSjvyaOHGifZuMG09TZlLf10KiyspKXXvttfryyy+THrv33nsT7qfbFiSzw7NgwQKdffbZ9s9w/PjxWrVqlbp06ZI0r5FjzEKD2LJlS8KX2QeDQWvmzJnWXXfdlfQv3j//+c+Ey/Gfe+651u9//3vr1FNPtacFAoGEy/RHIpGEr24rKiqyfv3rX1vXXHNNwnfvfe973zvs12rulixZYl177bXWtddea02aNCnh5zNp0iT7sTfeeMNeZuDAgZYk69RTT7Wuu+4669Zbb7V+8IMfWMFgMGH5l19+2V6GzBpGffJijHnPM888Y0my2rdvb02dOtW65ZZbrF/84hfWcccdl/DzGz16dMJyTZklnNu+fbuVn59v/yxPOOEE65ZbbrEmT56ckNef/vQnt0ttdmbMmGFJsnr16mVNnz7duu2226yf/vSnVvv27RN+9rfccou9zDXXXJMwXn7yk59YN954o9W1a1d7evfu3a3Kykp7GTLOzv3332+/Hw0bNizhZxSbfu2111p79uyxLKtpM6nPa7UE2WS2d+9eS5LVqlUra9y4cdZvf/tb67e//a01atSohOWOPPJIO2PLIrOGMn/+/ITvEy8uLrbuuOOOpH7rySeftJcxbYzRoDeQ2t/JXNe/2n7zm9+kndfn81l/+ctfkpbZvHmz1a1bt7TLDRw40Nq1a1eDvFZzVvu7LtP9mz17tr1MrEFP9y8QCFh//OMfk16LzA5fffKyLMaY18Qa9Lr+fetb37I+//zzpGWbMks49+yzz1q5ublpf8YXX3yx/d30aDixBr2uf5MmTUr4LvSvvvrKOuuss9LO365du5TfZU7Gzo0cOdLRe9XHH39sWVbTZlLf12russks1qDX9a9du3YJO2piyOzwOd0WHDlypL2MaWOMBr2BHE6DblmW9cILL1jnnXee1aFDBysnJ8c6+uijrUmTJtUZ4J49e6xf//rX1vHHH2/l5eVZbdu2tQYPHmzNmjXL+uqrr9IuV5/Xaq7q0/Bt3LjRmjVrljVq1CirZ8+eVl5enpWbm2v17t3b+u///u86946S2eGpb4NuWYwxLzlw4IC1cOFCa9q0adaJJ55odezY0QoGg1b79u2tM844w7rnnnusqqqqtMs3ZZZw7v3337emTZtmdevWzWrVqpXVvn17a/To0dYTTzzhdmnN1hdffGE99NBD1ne/+13ruOOOswoLC+0xMWHCBOsf//hHyuVCoZD1wAMPWMOGDbMKCgrs97Crr77a+uyzz9K+Hhk7k22DbllNm0l9X6s5yyazaDRqrVixwrr22mutU045xerSpYvVqlUrq23bttbAgQOtmTNnWqWlpWlfi8wOT30adMsya4z5LCvF984AAAAAAIAm1XKvUgQAAAAAgIfQoAMAAAAA4AE06AAAAAAAeAANOgAAAAAAHkCDDgAAAACAB9CgAwAAAADgATToAAAAAAB4AA06AAAAAAAeQIMOAAAAAIAH0KADAAAAAOABNOgAADQzN910k3w+X9b/rrnmGrdLBwCgRaNBBwAAAADAA2jQAQAAAADwgKDbBQAAgMbXpUsXff/7369znpEjRzZRNQAAIBUadAAAWoBjjz1W99xzj9tlAACAOnCIOwAASJDqInOPPvqoJGnevHkaM2aMOnXqpEAgoFGjRqV8jtdee01XX321Bg0apA4dOqhVq1YqLi7W8OHDdfPNN+vLL790VMvq1as1adIkHX300WrdurV69OihadOmad26dZKkadOmJdW6YsWKBvgpAADQ9NiDDgAAMgqHw7rgggv0zDPP1Dnf7t279d///d/697//nfTYrl27tGvXLq1evVp33XWX7rnnHv34xz9O+1x33HGHrr/+ekWjUXvatm3bNGfOHM2bN09//vOf679CAAB4EA06AADI6Oabb9Znn31W5zy7d+/WsGHDtGXLlozPd+DAAV1++eWqrKzUz3/+86THH3vsMf36179Ou3woFNL06dPVvXv3zMUDAGAIGnQAAFqALVu2ZPye81mzZikvLy/lY7HmvGPHjhozZozatm2rDz/8UIFAwJ5n2rRpSc1527ZtNXbsWBUXF2vTpk1Jh5//8pe/1MiRI3XSSSfZ0/bt26cZM2Yk1dCmTRudd955Kioq0ssvv6wPPvhAn376aZ3rBACASWjQAQBoAUpLS/WnP/2pznluuummtA26JE2YMEHz5s3TEUccYU/bv3+/JGnNmjVatGhRwvwDBw7Uiy++qA4dOtjTnnnmGV144YWyLEtSzaHzt956a8Kh84899pj27duX8FxFRUV65ZVX1K9fP0lSJBLRtGnT9Pe//73OdQIAwCRcJA4AAGTUvn17PfbYYwnNuST7/sKFC5OW+eMf/5jQnEvS9773PZ1yyikJ0xYvXqyvvvrKvv/CCy8kPdd1111nN+eSFAgEdO+99yo3Nzf7lQEAwKNo0AEAQEbnn3++2rVrl/bxNWvWJE0766yzkq6w7vP59PrrryfMd+jQIb399tv2/XfffTfpuc4555ykae3bt9fQoUOzWAsAALyNBh0AgBZg5MiRsiyrzn91NeADBgyo8/l37dp1WPXFf+1aWVlZ0uNdu3ZNuVy66QAAmIgGHQAAZFRYWNiozx87lz0dn8+XcnrsXHYAAJoDLhIHAAAyStcgxxQXF+v9999PmPbjH/9Ybdu2dfT8xx9/vH37yCOP1Oeff57w+Pbt29WxY8ek5UpLSx09PwAAJqBBBwAAh+2UU07Ryy+/nDBt7NixuuiiizIuG4lEEr6ubdCgQUkNeklJScJXsUk1X8dW+3x2AABMxiHuAADgsF1wwQVJ066++mq9+eabKecPhUJavny5fvKTn+j8889PeGzcuHFJ8//v//6vPvzwQ/t+NBrVNddco+rq6sMrHAAAD2EPOgAAOGzDhg3TuHHj9Pzzz9vTdu7cqVNOOUWnnHKK+vbtq8LCQpWXl2vr1q1677337PPOR44cmfBcl1xyiX77298mfBd6WVmZBg8erO985ztq3769Vq5cmXRIPQAApqNBBwAADWLOnDkaNmyYtm7dmjD9jTfe0BtvvOH4eQoLC/WnP/1Jl156acL0r776SvPnz7fvB4NB9erVK2HPOgAAJuMQdwAA0CA6duyo1157LemQ9bq0adNGZ5xxRtL0H/7wh7r99tvTXpwuNzdXjzzyiIYNG1bfcgEA8Bz2oAMAgAbToUMHPfPMM1q7dq3mzp2rV155RR9//LH27dsnv9+vdu3aqXfv3ho4cKDOOussjR07VkcccUTK5/r1r3+tUaNG6e6779Z//vMf7d27V0cddZTOOussXXvttfrWt76lZcuWNfEaAgDQeHwWXyAKAAAMNW3aNM2ZMydh2vLlyzVq1Ch3CgIA4DBwiDsAAAAAAB5Agw4AAAAAgAfQoAMAAAAA4AE06AAAAAAAeAANOgAAAAAAHsBV3AEAAAAA8AD2oAMAAAAA4AE06AAAAAAAeAANOgAAAAAAHvD/A+v2meZD7QbiAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot.Plotting_SpanSelector(freq, np.abs(spectrum), \"Freq\", \"Spectrum\", \"red\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 4 }