{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# PyOR also called Python On Resonance\n", "## Author: Vineeth Francis Thalakottoor\n", "## Email: vineeth.thalakottoor@ens.psl.eu or vineethfrancis.physics@gmail.com\n", "## Example: NOE (Liovillie space and Lindblad)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Define the source path\n", "SourcePath = '/media/HD2/Vineeth/PostDoc_Simulations/Github/PyOR_V1/PyOR_Combined/PyOR/Source_Doc'\n", "\n", "# Add source path\n", "import sys\n", "sys.path.append(SourcePath)\n", "import time\n", "%matplotlib ipympl\n", "\n", "# Import PyOR package\n", "from PyOR_QuantumSystem import QuantumSystem as QunS\n", "from PyOR_Hamiltonian import Hamiltonian\n", "from PyOR_DensityMatrix import DensityMatrix\n", "from PyOR_QuantumObject import QunObj\n", "from PyOR_HardPulse import HardPulse\n", "from PyOR_Basis import Basis\n", "from PyOR_Evolution import Evolutions\n", "from PyOR_Plotting import Plotting\n", "import PyOR_SignalProcessing as Spro\n", "from PyOR_Commutators import Commutators\n", "from PyOR_QuantumLibrary import QuantumLibrary\n", "from PyOR_Relaxation import RelaxationProcess" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Define the spin system\n", "Spin_list = {\"A\" : \"H1\", \"B\" : \"H1\"}\n", "QS = QunS(Spin_list,PrintDefault=False)\n", "\n", "# initialize the system\n", "QS.Initialize()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Set parameters" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rotating frame frequencies: {'A': -2514706800.0, 'B': -2514706800.0}\n", "Offset frequencies: {'A': 10.0, 'B': 50.0}\n", "Initial spin temperatures: {'A': 300.0, 'B': 300.0}\n", "Final spin temperatures: {'A': 300.0, 'B': 300.0}\n", "Radiation damping gain: {'A': 0, 'B': 0}\n", "Radiation damping phase: {'A': 0, 'B': 0}\n", "\n", "Rprocess = Auto-correlated Dipolar Homonuclear\n", "RelaxParDipole_tau = 1e-11\n", "DipolePairs = [('A', 'B')]\n", "RelaxParDipole_bIS = [30000.0]\n", "Larmor Frequency in MHz: [-400.22802765 -400.22806765]\n" ] } ], "source": [ "# Master Equation\n", "QS.PropagationSpace = \"Liouville\"\n", "QS.MasterEquation = \"Lindblad\"\n", "\n", "# B0 Field in Tesla, Static Magnetic field (B0) along Z\n", "QS.B0 = 9.4\n", "\n", "# Offset Frequency in rotating frame (Hz)\n", "QS.OFFSET[\"A\"] = 10.0\n", "QS.OFFSET[\"B\"] = 50.0\n", "\n", "# Define J coupling between Spins \n", "QS.JcoupleValue(\"A\",\"B\",5.0)\n", "\n", "# Define paris of spins coupled by dipolar interaction\n", "QS.Dipole_Pairs = [(\"A\",\"B\")]\n", "\n", "# Define initial and final Spin Temperature\n", "QS.I_spintemp[\"A\"] = 300.0\n", "QS.I_spintemp[\"B\"] = 300.0\n", "QS.F_spintemp[\"A\"] = 300.0\n", "QS.F_spintemp[\"B\"] = 300.0\n", "\n", "# Relaxation Process\n", "QS.Rprocess = \"Auto-correlated Dipolar Homonuclear\"\n", "QS.RelaxParDipole_tau = 10.0e-12\n", "QS.RelaxParDipole_bIS = [30.0e3]\n", "\n", "QS.Update()" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Generate Hamiltonians" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Larmor Frequency in MHz: [-400.22802765 -400.22806765]\n" ] } ], "source": [ "# generate Larmor Frequencies\n", "QS.print_Larmor = True\n", "Ham = Hamiltonian(QS)\n", "COMM = Commutators()\n", "Hz = Ham.Zeeman_RotFrame()\n", "\n", "# J coupling Hamiltonian\n", "Hj = Ham.Jcoupling()\n", "\n", "# Generating the commutation superoperator\n", "\n", "QS.RowColOrder = 'C'\n", "QLib = QuantumLibrary(QS)\n", "\n", "Hz_L = QLib.CommutationSuperoperator(Hz+Hj)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Hz_L" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### product operator basis (Shift Z or PMZ basis)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "BS = Basis(QS)\n", "\n", "sort = 'negative to positive'\n", "Index = False\n", "Normal = True\n", "Basis_PMZ, coh_PMZ, dic_PMZ = BS.ProductOperators_SpinHalf_PMZ(sort,Index,Normal)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Initialize Density Matrix" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Trace of density matrix = 1.0\n", "Trace of density matrix = 1.0\n" ] } ], "source": [ "DM = DensityMatrix(QS,Ham)\n", "\n", "Thermal_DensMatrix = True\n", "\n", "if Thermal_DensMatrix: \n", " # High Temperature\n", " HT_approx = False\n", " \n", " # Initial Density Matrix\n", " rho_in_L = DM.EquilibriumDensityMatrix(QS.Ispintemp,HT_approx)\n", " \n", " # Equlibrium Density Matrix\n", " rhoeq_L = DM.EquilibriumDensityMatrix(QS.Fspintemp,HT_approx)\n", "else:\n", " rho_in = QS.Az + QS.Bz\n", " rhoeq = QS.Az + QS.Bz " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Density Matrix = 2e-05 Iz1 Id2 + 2e-05 Id1 Iz2 + 0.5 Id1 Id2 \n" ] } ], "source": [ "DM.DensityMatrix_Components(Basis_PMZ,dic_PMZ,rho_in_L)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Pulse" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "HardP = HardPulse(QS)\n", "\n", "flip_angle1 = 0.0 # Flip angle Spin 1\n", "flip_angle2 = 180.0 # Flip angle Spin 2\n", "\n", "rho = HardP.Rotate_Pulse(rho_in_L,flip_angle1,QS.Ay)\n", "rho = HardP.Rotate_Pulse(rho,flip_angle2,QS.By)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Density Matrix = 2e-05 Iz1 Id2 + -2e-05 Id1 Iz2 + 0.5 Id1 Id2 \n" ] } ], "source": [ "DM.DensityMatrix_Components(Basis_PMZ,dic_PMZ,rho)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Evolution " ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Larmor Frequency in MHz: [-400.22802765 -400.22806765]\n", "Larmor Frequency in MHz: [-400.22802765 -400.22806765]\n", "Total time = 0.6403965950012207 seconds \n" ] } ], "source": [ "QS.AcqDT = 0.0001\n", "QS.AcqAQ = 30.0\n", "QS.OdeMethod = 'DOP853'\n", "QS.PropagationMethod = \"Relaxation Lindblad\"\n", "\n", "# Relaxation Superoperator\n", "RPro = RelaxationProcess(QS)\n", "R_L = RPro.Relaxation()\n", "\n", "EVol = Evolutions(QS,Ham)\n", "\n", "start_time = time.time()\n", "t, rho_t = EVol.Evolution(rho,rhoeq_L,Hz_L,R_L)\n", "end_time = time.time()\n", "timetaken = end_time - start_time\n", "print(\"Total time = %s seconds \" % (timetaken))" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Expectation Value" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "det_Z1 = QS.Az\n", "det_Z2 = QS.Bz\n", "\n", "t, signal_Z1 = EVol.Expectation(rho_t,det_Z1)\n", "t, signal_Z2 = EVol.Expectation(rho_t,det_Z2)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/anaconda3/lib/python3.12/site-packages/matplotlib/cbook.py:1762: ComplexWarning: Casting complex values to real discards the imaginary part\n", " return math.isfinite(val)\n", "/opt/anaconda3/lib/python3.12/site-packages/matplotlib/cbook.py:1398: ComplexWarning: Casting complex values to real discards the imaginary part\n", " return np.asarray(x, float)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "90905408776c4e17a556d7129f5e2cd6", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAH0CAYAAACuKActAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACY2UlEQVR4nOzdeXhTZfo+8DtbSwulFNoiLV0oO1QsO1RAQBYp7oyKqF90HBHUcRln3EdBRxl1dFx+DqCOyziKiIMLUrQ4rLIVwYIFy76UsjVlaaFpm+Sc3x+ZxKRN3qZtknNOcn+ui8umeXPyHN87B56cTSfLsgwiIiIiIiIiUpRe6QKIiIiIiIiIiA06ERERERERkSqwQSciIiIiIiJSATboRERERERERCrABl1l1q5di7y8PCQlJUGn00Gn02H+/PlBf9/Ro0e73s/9z4gRI4L+3kRERERERAQYlS6APG3btg0rVqxAVlYWzGZzyN8/KysLSUlJrsd9+/YNeQ1ERERERESRiHvQVea2225DZWUlvvvuO59jjh07ht/+9rdISUlBVFQUsrKy8Nxzz8Fms7X4/f/85z9j06ZNrj8LFixo8TKJiIiIiIiocWzQVaZDhw6IiYnx+bzZbMawYcPw/vvv4/z58+jduzdKS0vx9NNPY8aMGS1+/4ceegjR0dHIysrCjBkzcPLkyRYvk4iIiIiIiBrHBl1j3nrrLZSWlqJjx47Yv38/tm/fjs8//xwA8MEHH2Dfvn3NXnbr1q2RlpaGpKQkHDx4EO+88w6GDx+OCxcuBKp8IiIiIiIi8oENusYUFhYCAE6ePInk5GTodDpce+21AABZlrF582YAjmbd20Xf3P84G3sAeO2113D69Gns2LEDpaWlePzxxwEABw8exBdffBHalSQiIiIiIopAvEicxsiyDACIi4tDnz59GjwfGxsLAOjRowfuvPNO4bK6dOni+jknJ8f1s06nw7Rp0zB37lwAwJEjR1paNhERERERETWCDbrGDBkyBMuXL4fRaMSnn36KzMxMAEBVVRW++OILXHfddQCA3Nxc5Obm+rXMU6dO4d///jfuuusuxMXFAQAWLVrket75HkRERERERBQ8Otm5S5ZUYcmSJXjkkUdgs9lw+PBhAEBSUhLatm2LoUOH4rXXXkP//v1RVlaGqKgo9O7dG1VVVSgtLYXVakVzpvPQoUPo0qULjEYjunXrhgsXLqC0tBQA0Lt3b2zbtg2tWrUK6HoSERERERGRJ56DrjKVlZXYv3+/qzkHgPLycuzfvx9lZWVISkrCpk2bcMcdd6BDhw7YuXMnLBYLRo4cib///e/Nes+kpCQ8+eSTyMnJwalTp2A2m9GrVy889thjWL9+PZtzIiIiIiKiEOAedCIiIiIiIiIV4B50IiIiIiIiIhVgg05ERERERESkAryKuwpIkoRjx44hLi4OOp1O6XKIiIiIiIgoyGRZRlVVFVJSUqDXO/ads0FXgWPHjiEtLU3pMoiIiIiIiCjESktL0blzZwBs0FXBee/x0tJStG3bVuFqvLNarSgoKMCECRNgMpmULodUhvkgEeaDRJgPEmE+SIT5IBEt5KOyshJpaWmufhBgg64KzsPa27Ztq+oGPTY2Fm3btlVtwEk5zAeJMB8kwnyQCPNBIswHiWgpH+6nOfM2aypQWVmJ+Ph4nDt3TrUNuiRJMJvNSExMdJ0fQeTEfJAI80EizAeJMB8kwnyQiBby4a0PZIOuAlpo0ImIiIiIiChwvPWB6vwqgVTHarVi2bJlsFqtSpdCKsR8kAjzQSLMB4kwHyTCfJCIVvPBPegqoIU96M5bAPBWcOQN80EizAeJMB8kwnyQCPNBIlrIB/egU4vExMQoXQKpGPNBIswHiTAfJMJ8kAjzQSJazAcbdPKLzWZDfn4+bDab0qWQCjEfJMJ8kAjzQSLMB4kwHySi1XywQSciIiIiIiJSATboRERERERERCrABp2IiIiIiIhIBdigExEREREREakAG3QiIiIiIiIiFWCDTkRERERERKQCOlmWZaWLiHTeblCvNrIsw2azwWg0QqfTKV0OqQzzQSLMB4kwHyTCfJAI80EiWsiHtz6Qe9DJbxaLRekSSMWYDxJhPkiE+SAR5oNEmA8S0WI+jEoXQNpgs9mwbt06TJgwASaTSelySGV85cMu2WGuNuPAmQPYf2Y/Tpw/gSPnjmD7ye3YfHQzau21ClbdNG2i2iCtbRq6d+iO1LhUdGvfDZ3bdkZa2zSkxKWgbXRbtI1uC71Or9pvaZXC7QeJMB8kwnyQCPNBIlrNBw9xVwEtHOJOBAC1tlpsP7kd64+sx38P/hfL9i5TuiTNiouKQ25aLrKTszGw00B079AdWQlZiI+Oh0FvULo8IiIiIgoyb30gG3QV0EKDLkkSzGYzEhMTodfzzIhwZLVbse34NizdsxT//OmfOHH+hNIlkQ8DOw3EsM7DcGnapRjQaQA6t+2M1lGtlS7LJ24/SIT5IBHmg0SYDxLRQj689YE8xJ38YrfbsXHjRuTl5ak24NS4GlsNVh5cifk/zsfSPUuVLoeaaevxrdh6fCve2vKWX+MvanMR8rrlITctF7lpuchKyEK0MTrIVf6K2w8SYT5IhPkgEeaDRLSaDzboRGGo2lqNr0q+wuw1s7GnYo/S5ZDCTpw/gfeK3sN7Re81OjbWFIuJXSdiUrdJyE3LRfcO3RFliApBlURERETEBp1I48oqy/DKxlfw901/V7oUCgPV1mp8UfIFvij5otGxAzoNQF63PFyedTkGdBqAttHqPEWHiIiISCvYoBNpSGVtJd7Y/Ab+vOrPSpdChG3Ht2Hb8W34y7q/CMcNThmMTHsm2pW2w5C0IYgxxYSoQiIiIiJtYYNOpFKyLOMX8y+4a+ld2FC6QelyVKOVsRUy4jPQIbYDWptaI75VPKIN0YiLikOUIQrRxmiY9CYY9Abo4LjdmV22Q5Il2CQbrHYr6ux1sNgsqLZWo6quCtXWapirzThfdx4nzp9Aja1G4bUML1uObcEWbMHijxYLx93Q5wZM7DoRY7uMRWa7TN6ujoiIiCIOG3QiFSk+VYwpn00Jq/PGL8u4DMM7D0fORTnomdgTqXGpaNeqHYx6Y9g2YM4vA87VnMP5uvM4fv44yirLsKdiD0oqSvDT8Z+ws3yn0mWqzuJdi7F4l7iJH5wyGNf0vAaTuk/CxckXw2TQzn1NiYiIiBrDBp38otPpEBcXF7YNlVJOW05j5jczG21K1CTaEI1b+92Kyd0nY2jnoUiKTYJO1mHt2rUYNWoUjEZuVvQ6PaIMUUhqnYSk1knoktClWcuRZAm1tlpUWCpwrOoYSswl2HpsK9aXrsfW41sDXLU2bDm2BVuObcFTq57yOSYrIQu3XnwrxnYZi2Gdh4X0ivXUdPz7hUSYDxJhPkhEq/ngfdBVQAv3QafAkGUZ+XvzceXCK5UuxaeLky/GfUPuw4SuE5Aenw69Tju3pSAHWZZhsVlQUV2BPRV78NOJn7Dy4EqsOLACNsmmdHmq0L19d1zb61pc3fNqDE4ZzCaeiIiIQs5bH8gGXQW00KBLkoTS0lKkpaVp6j6CalBjq8Fza57DCz+8oHQpLmlt0/DMZc/gml7XoENMhxZ/s8h8aJ/VbsWZmjPYbd6NH4/9iO/2f4fv9n+ndFmK6p3YGzf2vRF53fOQc1EObzcXJNx+kAjzQSLMB4loIR/e+kAei0p+kSQJZWVlSE1NVW3A1cRitWDmspn41/Z/KVpHrCkWb1zxBn7T5zeIbxUftPdhPrTPZDAhuXUyklsnY2TGSDw0/CGfYyVZQlVtFfad3oetx7cif28+vtr9VQirDY1fzL9gzpo5mLNmjs8x/S/qj1suvgXjssYhOzkbBr0hhBWGB24/SIT5IBHmg0S0mg/uQVcBLexBp8bV2Gpwz7J78H7R+4q8f6/EXngr7y2MzhzNw9JJNeySHcfPH0eJuQT/PfBffLn7S5SYS5QuK6Qmdp2Iq3pchYndJqJrQlfNnQtHREREwcFD3FVKCw263W7H3r170b17dxgM3EPkZJfseGvLW3jg2wdC/t7/uvZfuKHvDWhlbBXy966P+SARf/IhyRJOW06jxFyC1YdW4/Ndn2P7ye0hrlQ51/W6Dtf3vh6Xd7kcneI6KV1OSHH7QSLMB4kwHySihXzwEHdqNkmSsHv3bnTt2lW1AQ+lrce2YtA7g0L2flkJWVhy4xJc3PFiVe4dZz5IxJ986HV6JMYmYkT6CIxIH4GnRnm/SrtNsqGiugLbT27H9we+x8c/f4xjVceCWX5IfFHyBb4o+cLn81GGKEzNnorrel2HURmj0D6mfQirCy5uP0iE+SAR5oNEtJoPNuhEfqq11eLaRdfi233fBv29kmKTsOK2FejXsR8PhyVyY9Qb0bFNR0xoMwETuk7AS+Nf8jquxlaDo5VHsf7IeizdsxT/+eU/Ia40sOrsdfjX9n8Jr2sRHx2PO3LuwISuEzAifQTiouNCWCEREREFAht0okZsO74NA98eGPT3+fj6j3Fj3xth1PNjSdRSrYyt0K19N3Rr3w3Tc6Z7HeM8rL74VDG+2/cdPin+BEfOHQlxpYFzrvYcXtv8Gl7b/JrPMZ3bdsaU3lNwdc+rMazzMMSaYkNXIBERETUqrDuBsrIyfPXVV1i9ejV27dqFEydOoLKyEgkJCRg4cCDuuusuXHfddU1e7o8//oi//e1vWLt2LSoqKtCuXTsMHToU999/P8aNGxeENaFQs0t2PPb9Y/jbxr8F7T0GdBqAr6d+jdS2qUF7DyLyzXlY/ejM0RidORpzx831Ou5C3QUcOnsIKw+uxOJdi7HuyLoQVxo4RyuP4vXNr+P1za/7HJMen44b+tyAvO55bOKJiIhCLKwb9I8++giPP/54g9+fOnUKy5cvx/Lly3H33Xdj/vz5fi/z3Xffxd133w1JkjyWt3TpUixduhRPP/005szxfUseUrfK2kp0f7M7Tl04FZTl/37I7/HXcX/lP3iJNKR1VGv0Te6Lvsl98fuhv/c6xibZcOTcEWwp24L//PIfLN61OMRVBs6Rc0fwysZX8MrGV3yOSYxNxP/1+z+MyxqHS9MvRdtodV7glIiISGvCukF36ty5M/Ly8pCeno7du3dj4cKFsNlsAIAFCxbgN7/5jV97vouKijBr1ixXcz5s2DBceeWVWL9+PZYvXw4AePbZZzFkyBBMnjw5eCtEAVd6rhTpr6UHZdmPj3gcz455loeuE4Uxo96IrIQsZCVk4absm7yOkWQJ5mozfjr+E5buWYoPij7ABeuFEFcaGOZqM17d9Cpe3fSqzzFtotpgSu8puKbnNbg0/VIkt04OYYVERETaFNYdQ0ZGBj755BPceOONHlfumzBhAm677TbX4+XLl/vVoM+dO9fV2Hfp0gVr1qxBVFQUAGDEiBFYv349AOC5554LuwZdr9cjPT0der36riDeEkUnitB/Qf+AL3fmwJl47YrXEG2MDviy1Shc80GBwXw46HV6JLdOxsRuEzGx20T8v7z/12CMLMuorK1E8alirDiwAp/8/An2nt6rQLUtd77uPD7c/iE+3P6hcNykbpMwIHYAup/pjl5JvVR5pwpSDrcfJMJ8kIhW8xGR90E/f/484uJ+vbrtfffdhzfffFP4Grvdjvj4eFy44Njb8fvf/x5vvPGG6/lXX30VDz/8sOvxyZMnkZzs394CLdwHPdz8cOQHjHx/ZECX2TepL3747Q9o16pdQJdLRFRftbUaB88cxH8P/hef7/pc0+fF+yM7ORuTu0/GpG6TMChlEFpHtVa6JCIiohbjfdD/Z/fu3R6PBw8e3OhrDhw44GrOASArK8vj+fqPd+zY4XOvfG1tLWpra12PKysrAQBWqxVWq7XBeL1eD4PBALvdDgAwGAyw2Wzw9d2KwWCAXq+HzWaDXq+HXq/3ulwno9ERA5vN5vGzO7vdjp07d6Jv375o1aoVJEmCJEkwGo2QJMlVW306nQ5Go9Gjdrvd7nEOv7d1da/dn3W1Wq0+a3e36dgmjPpglM/nm+OH6T9gSOoQVcyTO5PJFLJ5kmUZRUVF6Nu3r9f7TDZ1ntzHONejsdrd19Wf2iNxngL9efJ3npzbj5ycHOh0Os6Tj3VtyjzFmmLRI6EH+iT1we+H/N5r7Va7FWVVZdh6ciuW/LJE0+fFF58qRvGpYry4/kXhuOt7X4/xWeMxMm0keif3BmSE3efJvfZI2O5JkoRdu3a5/n7hPDWsXQ3zpNTnyf3fp+7//uA8qWue/FnXYMwT4DhF+eKLL0ZUVJQq58nbe0Rcg37hwgXcc889rsc9evTAjTfe2OjrKioqPB7X39PtvkceAMxms89lzZ071+uF5AoKChAb2/DiYenp6ejfvz927NiBmJgY9OrVC4WFhSgvL/e6/JycHGRkZGDt2rXIzs5GcnIyCgoKfIZmzJgxiImJQX5+PvLy8mCxWLBq1SqvY0+cOIHJkyfDbDajuLgYY8eORWlpKYqKiryOT0pKQm5uLvbu3QuLxeJajyNHvN/KqGfPnq71S01Nda1HVVWV1/HDhw93rd/IkSNd61HfgeoD+MOeP3hdRnOMSRiDe9PvhVFnhHm7Gfnb81U1T0ajMaTz1LlzZ5w6dQpHjx71Ot7feXJyrt+6detc67Fx40avY+Pi4lzrV1ZW5lqP+l/EOUXyPAXq8+TUlHlyng7EeWoo2PM0JW8K8tLzMD12OiZPnoxTp0655kmWZVTZq3DYchhbK7di3bl1qKir8LkstVvyyxIs+WWJcEy8MR5D44fistTLcMe4O3D26FnU1NQoPk/c7hV5HZ+UlIT27dtj3759qK2t5Ty5Uds8Kbndq//vD85TkdfxSs9TfcGep379+qGqqgr79u1Dnz59VDlP1dXVDcZH1CHu5eXluPrqq7Fp0yYAQMeOHbF27Vr06NGj0ddu3LgRubm5rsfvvvsu7rzzTtfj77//HuPHj3c9/vTTT3HTTd4vFORtD3paWhrMZrPXQ9z5TV3zv6k7cOYAes3r5XNdmmrV/63CpZ0vFdbOefK9rmr5RpXzxHniPDVtnix1Fuw7sw/rS9djSckSrDy00uf7hYuuCV0xMWsiJnSdgMGdBqNjXEfVzxM/T9r4PHGeOE+cp4brGqnzVFlZicTERI9D3COmQd+7dy8mTZqE/fv3AwDS0tJQUFCAXr38a9727NmDnj17uh7//e9/x4MPPuh6vGTJEkyZMsX1uKCgwKNhF9HCOeg2mw2FhYUYMmSIK4Rqdq7mHNq92C4gy0qJS8Hu+3ajTVSbgCwvHGktHxRazEdkkGQJpy2nse34Nny771v8e8e/UV7tfU9FOMmIz8AV3a7AhK4TMCR1CFLjUqHT6ZQuK2xw+0EizAeJaCEfEXsO+vr163HNNde4DlPPycnBN998g9TUVL+X0bVrV7Ru3dp1Hrqz0Xeq/7hfv34trFpdZFlGeXm5z2+d1EKWZQz/53BsLtvc4mXNGDAD86+cz39o+UEr+SBlMB+RQa/TIzE2ERO6TsCErhPw6kTvt2Cz2q04dPYQNpRuwNd7vm70kHS1O3zuMBZsXYAFWxcIx0UZonBdr+tweZfLMTxtOHon9oZB3/CaHeSJ2w8SYT5IRKv5CPsGffHixfi///s/1NTUAHCc67Bo0SK0aeN9b+js2bNd54dnZGTg0KFDAByHPUyaNAmff/45AGDp0qX429/+hujoaMiy7Po9AAwZMgQdO3YM4lqRNy+tfwmPfv9oi5fzzlXv4HcDfheAioiIqD6TwYTuHbqje4fumJ4zHVar1XUOn8lkAuD4R5XFZsFu826sObwGX5Z8iTWH1yhcecvU2euwaOciLNq5qNGx/S/qj3FZ4zC2y1gM6DSA95AnIoogYd2gL168GDfddJPrW5Pk5GSMGjUK8+fP9xiXlpbm83xxd48//ji++OIL2O12HD58GKNHj8aVV16JdevWobCw0DXuySefDOyKkFCJuQS93+rd4uV8e8u3mNhtYgAqIiKiltDpdIg1xaJ/p/7o36k/Hhz2oNdxsizjgvUCdpXvwqqDq/BFyRcBOYJKaT+d+Ak/nfgJL294udGxYzLHYELXCchNy8UlHS9BfKv4EFRIRETBEtYN+s6dOz0OaTh16hQee+yxBuMuu+wyvxr0AQMG4K233sKsWbMgyzI2bdrkuuCc0xNPPIGrr7665cVTo2pttWj1fKsWL2fdHeswIn1EACoiIqJQ0ul0aBPVBkNSh2BI6hA8OsL7UVSyLON83XnsPb0Xqw+txte7v9b8HnmnVYdWYdUh71cOrm9Uxihc0fUKDO08FJd0vATtY9rzNC4iIpUJ6wY9GO6++270798ff/vb37Bu3TpUVFQgPj4eQ4cOxf33348JEyYoXWJEWPDjAsxcNrNFy1g9fTUuy7wsQBUREZFa6XQ6xEXHYUCnARjQaQD+MNz3bTdrbbU4fO4wNpRuwHf7v8NnOz+DJHu/SrDWrD28FmsPr/VrbHZyNkZnjMaojFEY0GkAMttl8px5IqIQCOsGffbs2Zg9e3bAXzNkyBB89tlnzS+Mmu2M5Qzav9S+RctYcuMSXNf7ugBVRERE4STaGI0eHXqgR4ceuD3ndiycstDrOEmWUFFdge0nt2P1odX4Zs832H5ye4irDZ7iU8UoPlWM/7fl//k1flzWOIzJHIPBKYPRr2M/JLdO5t55IqJmiJjbrKmZFm6zJkkSSktLkZaWBr1er0gNM5bOwDvb3mn2618c9yIeufSRAFZETmrIB6kX80EikZCPOnsdyirLUFhWiJUHV2LpnqU4fv640mUpRq/TY0zmGIztMhYDOw1EdnI2UuJSvDb0kZAPaj7mg0S0kA9vfSAbdBXQQoOupMNnDyPz9cxmv/6qHlfhq6lf8Zt8IiJSNVmWUWevw+Fzh7Ht+Das2L8Cy/ctj+hm3qlfx34YnTEag1MH45KOl6Br+66INcUqXRYRUYuwQVcpLTToNpsNa9euxahRo2A0hu7MiFnfzML8rfMbH+iD5UkLWhlbfiE5ElMqH6QNzAeJMB/NZ5NsOFp5FNtPbMfaw2uRvy8fJeYSpctSjRHpIzAmcwxyLspBn6Q+6JrQFSaDSemyKIC4/SARLeSDDbpKaaFBlyQJZrMZiYmJITlEpKK6AokvJzb79bvu2YXeSS2/9Rr5J9T5IG1hPkiE+QgNSZZwvu48dpXvwuajm7Hm8Bos27sMdfY6pUtTlYGdBmJY52EYkjoEfZP6olv7bmgb3ZZH4akUtx8kooV8sEFXKS006KH0ztZ3MOObGc167ZuT3sR9Q+4LcEVERESRRZIllF8oR/GpYmw5tgWrD63Gd/u/U7osVYoyRGFE+gjkds5FzkU56NGhB7q174YYU4zSpRGRyrFBVyktNOhWqxUFBQWYMGECTKbgHB5ml+wwPtf8w09qnqxBtDE6gBWRv0KRD9Iu5oNEmI/wIMsyzNVm7Du9D1uObcGaw2uwYv8KVNVVKV2aquWm5WJi14kY3nk40uPT0SmuE2JNsTDq1Xk4rtpw+0EiWsiHtz6Qn37ym81mC9qyi08V4+J5FzfrtdtmbEP/Tv0DXBE1VTDzQdrHfJAI86F9Op0OSa2TkNQ6CcPThuP+ofc3+hqL1YKyqjIUnShCYVkh1hxeg8KywhBUqx4bSjdgQ+mGJr+uV2Iv5HbOxaCUQeiZ2BPp8elIik1Cm6g2EXe/em4/SESL+WCDTop7ZMUjeHnDy01+3RXdrkD+tHyeF0ZERKRBMaYYdGvfDd3ad8Nv+vzG6xir1Yr8/Hzk5eXBZDLhQt0FlFaWYsfJHdhStgUbjjavwdW6EnMJSswleK/ovSa/Nj46HkNSh2Bo6lD0Te6L7u27o2ObjkiKTYLJYIJep85zdYkiBRt0UoxNssH0XPMON9l//35kJWQFuCIiIiJSs9ZRrdErsRd6JfbCjX1v9Os1VrsVJy+cRIm5BEUnirC5bDNWH1oNc7U5yNWq07nac1hxYAVWHFjRrNcbdAZcmn4pBnUahD5JfdC9Q3ektU1D+5j2aB3VGgadgTtPiFqADTop4pfyX9DnH32a/Lqbs2/Gx9d/zA0/ERER+cVkMKFz287o3LYzxmWN8/t1NbYaHKs6hhJzCbaf2I6tx7di7eG1KK8uD2K16meX7Vh7eC3WHl7b7GXEGGMwKGUQBnYaiN5JvdGjQw+kxKUguXUyYowxiDJE8d96FLHYoFPIvVX4Fu5b3vQrrR+4/wC6JHQJQkVEREREnloZWyErIQtZCVnI657n9+vskh0VlgrsP70fu8p3Oc6xP1YYcefXi1hsFqw7sg7rjqxr0XLatWqHDGMGVn+/Gn079kWXdl2QFp+GhFYJiG8VD6PeyEP2SXPYoFNIdXm9Cw6dPdSk11ycfDG2z9zOb1KJiIhI9Qx6A5JbJyO5dTKGpw1v0mutditq7bUoqyzD/jP7UVhWiKITRdh+cnuT//0UCc7WnMVZnMX2wu0tXlbH1h0xMGUg+ib1RY8OPZDZLhOd23ZGh5gOaBPVBtHGaDb7FBK8zZoKaOE2a7Iso6qqCnFxcc1qlC/UXUCbuW2a/LqV/7cSY7qMafLrKLRamg8Kb8wHiTAfJMJ8NE2trRZVdVU4WnkUu827UWIuQeGxQmw/sR1lVWVKlxdR0uPT0SepD3p1cFwzIT0+3dHwx3ZAu1btEG1wNPzMdfBoYfvB+6CrlFYadJvNBqPR2OSAl54rRfpr6U1+T97XXDtakg8Kf8wHiTAfJMJ8hJYkS6isrURFdQX2nd6Hfaf34edTP6PoRBG2HNsCSZaULjGidYjpgD5JfdA7sTcy22WiS0IX1y32OsR2QCtjK8QYY/hZ+R8tbD/YoKuUFhr0+rc58deyPctw5cIrm/Re9wy6B29NfqupJZKCmpsPigzMB4kwHyTCfGiPXbLDYrOgoroCh84ewsGzB1F8qhi/mH/B1mNbcfLCSaVLJC8y22WiR4ce6N7ecVX+jHYZ6Ny2MxJjE5EYm4gYYwxiTbEAoNpmtz4tbD/YoKuUFhr05nwD9fj3j+Ov6//apPfZNmMb+nfq35wSSUFa+IaSlMN8kAjzQSLMR+SSZAnn687jXM05lFaW4sCZA9h/ej+Ky4uxq3wXdpXvUrpEaoKUuBR0Tejq+AIgPg1JsUlIj09HxzYdkRSbhLjoOMRFxcFkMAXsXH8tbD/YoKuUVhr0ppzDMejtQdh6fGuT3qP2qVpEGaKaWyIpSAvn+JBymA8SYT5IhPkgEX/zIckSLFYLKmsrUVpZitJzpdh3eh92VzjO0y8+VYyquqoQVk7B0trUGl3bd0VGfAZ6duiJqT2mYkDGANVuP9igq5QWGnR/DxGRZAmGZw1NWvakbpOQf0t+S0skBWnhECJSDvNBIswHiTAfJKJUPmRZRo2tBudqz7kO5S+tdDT9e0/vxW7zbuyu2B2yekjszYlv4r5hTb/Fcyh46wN5mzUKmDp7HaL/0rSLui25cQmu631dkCoiIiIiIgosnU6HGFMMYkwxuKjNReib3LfFy5RlGVbJihpbDU5bTuN41XEcP38cB88cxKGzh7DvzD7sP70fe0/vDcAaRJbff/d73DHgDrSOaq10KX5hg04BcdpyGh1e6tCk15T9oQwpcSlBqoiIiIiISBt0Oh2iDFGIMkShbXRbZLbLDNiy3Zv/M5YzOHnhJE6cP4Ej546g9FwpDp07hENnD2G3eTfO1Z4L2PuqyeJdi3F7zu1Kl+EXNujUYseqjiH11dQmvcbypAWtjK2CVBEREREREQENm/+MdhkBfw/nlwAX6i6gwlKBk+dP4tSFUzh+/jiOVR1DWVUZ9lbsxZFzR1BeXY4aW03AaxAx6bVzigwbdGqRnad2Intett/j0+PTcfjBw0GsiIiIiIiIQsn1JUBMFBJiEtCtfbegvI/z8mk1thrHVf5rz+FszVmcsZzBsapjOHnhJI5WHsU7295Bja0Gj2Q+gmdvfhbRUU07DVdJbNCp2bYd34aBbw/0e/zDwx/G3yb8LYgVERERERFRuHJejd15DYCk1klex70x6Q3XRQQDddu2UGGDTn4zGn+Ny8qDK3H5vy73+7Vf3vQlrul1TTDKIpVwzwdRfcwHiTAfJMJ8kAjzQSJazAdvs6YCWrjNmrv/Hvgvxn00zu/xP8/6GdnJ/h8GT0REREREFO689YHa2t9PipEkCadOncJXJV81qTk//vBxNucRwJkPSZKULoVUiPkgEeaDRJgPEmE+SESr+WCDTn6RJAn/XPtPXLvoWr9fY3nSgovaXBS8okg1JElCcXGx5jaAFBrMB4kwHyTCfJAI80EiWs0HD3FXAS0c4r5szzJcufBKv8fXPFmDaKN2rpZIREREREQUSjzEnZrMarfC+KyxSc25/IzM5jzCSJKEw4cPa+4bSgoN5oNEmA8SYT5IhPkgEa3mgw06CR2rOga7bPdrrElvgv1p/8ZSeLHb7SgqKoLdzvmnhpgPEmE+SIT5IBHmg0S0mg826CR0+Nxhv8ZlJWSh7s91mrvPIBERERERkVqwmyKhzUc3Nzom56Ic7L9/fwiqISIiIiIiCl9s0Eno2l7XCp8fnTkaP939U2iKISIiIiIiCmNs0EmoW/tuPp8bkT4Cq6avCmE1RERERERE4SvsG/TFixdj5syZGDRoEKKjo6HT6Vx/murQoUMer/f2x2g0BmEtlOPr/9OYzDFYd8e6EFdDREREREQUvsKrm/Ti+eefx/bt25UuQ9Ou7HElvtnzjetxzkU5WDl9pYIVkdrodDokJSU164svCn/MB4kwHyTCfJAI80EiWs2HTpZlWekigql///6oqqrCoEGDcOLECaxZs8b1XFNX/dChQ+jSpQsAICsrC7NmzWowRq/X4w9/+EOTluvtBvVqsqdiD+746g5sKN2AR3IfwYvjX1S6JCIiIiIiIk3z1geG/R70DRs2ICYmBgAwe/Zsjwa9JdLS0vDHP/4xIMtSux4demDt9LXYu3cvunfvrnQ5pEJ2u92VD4PBoHQ5pDLMB4kwHyTCfJAI80EiWs1H2J+D7mzOA23btm246KKLYDKZkJSUhPHjx2PhwoVBeS+1sFgsSpdAKsZ8kAjzQSLMB4kwHyTCfJA3kuT4rxbzEfaHuLubPXs25syZ43rckkPcfbnpppvwySefQK/3/d1HbW0tamtrXY8rKyuRlpYGs9ns9RB3vV4Pg8EAu90OADAYDLDZbD7rNxgM0Ov1sNls0Ov10Ov1sFqtPutxXtjOZrN5/OyLyWSCJEmQJAlGoxGSJLlqq8954Tz32u12OyTnp8bHurrX7s+6Wq1Wv2p3H+Ncj8Zqd19Xf2rnPPleV85TQ5wnzhPnifNUf105Tw3XlfPku3bOk3hdOU8N11Vr8yTLQG2tDjabEeXlEsrLJZw+bcTRoxL27ZNx/LgOp08DBw7oUFYGVFf/es75LbdIeO01GYmJ6pynyspKJCYmRtYh7oGm0+kwdOhQDBgwABdddBEOHTqEhQsXur6dWbRoEUaNGoV77rnH5zLmzp3r8UWBU0FBAWJjYxv8Pj09Hf3798eOHTsQExODXr16obCwEOXl5V6Xn5OTg4yMDKxduxbZ2dlITk5GQUGBz9CMGTMGMTExyM/PR15eHiwWC1at8n77NKPRiMmTJ8NsNqO4uBhjx45FaWkpioqKvI5PSkpCbm4u9u7dC4vF4lqPI0eOeB3fs2dP1/qlpqa61qOqqsrr+OHDh7vWb+TIka718MW5fuvWrXOtx8aNG72OjYuLc61fWVmZaz12797tdXwkz1Pnzp1RUFDgc0PGeVLHPCn5eTKZTJg4cSKOHj3KeapHTfPEzxPnCVDfPMXExCA6Ohq1tbWcJzdqmyd+niJvnmQZsNt1qK42orrahNTUQaitTcCKFbthMnXHqVMmFBVV4eTJ1jh3LtrreziY/vdfPRo/wNt9TOMHg3/8sR4ffwy8+iowdKj65qm6urrBeO5BbwKLxYLy8nKkp6d7/H7Hjh0YOnQoampqAACDBg3Cli1bfC5Hi3vQrVYrVqxYgfHjxyM2Njbsv6lzr53fqPpeV2ftdrsd+fn5GD9+PEwmU4PxnCd1zJNSnyfn9iMvLw8Gg4Hz5GNdlZ4n99pD+Xmqrq52/f1Sf/vBeVLPPCn1ebLZbCgoKMDEiRNhMpk4T15qV8M8KfV5cv/3qfv2g/P067ra7UBtLXD6NGA263DqlBEHD0ooLQUOHtTj4EEZv/wCXLigrSudN9UXXwBXXqm+eeIe9BaKiYlp0JwDQL9+/TB69Gh8++23AIBdu3YJlxMdHY3o6IbfIplMJq/NjZP7xQ2cQRBxHyNarrcxvsY7f+8Mbv2ffXGv3WAwNHqhBvfa/VlXf2r3Nt6f2t3H+FO7GubJKVTz5PyLoLEMc5684+fJN86Tb+E2T6LtB+fJu0j7PDnr5zx5Uts8uf8cqnnytf3Q0jzJMlBd7WikT5wASktNOHwYOHAA2LvXhF9+Afbt81k9PPcq+7MX2im8G3MAiI6WMXmyTpWfJ2+vYYMeIO7fxjS2ASAiIiIiIu2y24ELFxwNdWkpcPgwsH8/UFLi+PPLL44916S8//zHDpNJO22vdioNEffD4DMyMnDo0CHXcy+99BJyc3MxYsQIj9f8/PPPHrdvy87ODkmtRERERETkH0kCqqocTfXBg44/e/cCP/8M7NoFuP2znzQiMxNISwNSUhz/7dIFuOgioFMnoG1bK0pKlmPChElKl9kkYd+gz5s3D/v37wfguCe6O/f7mD/55JNISEgQLmvDhg149NFHkZ2djbFjxyI5ORkHDhzAwoULXeefAxBeII6IiIiIiPznPI/65EngyBHHnuqffwZ27jRg48ZJOH++8UORKfSSkoCePYFu3YDOnYGMDMd/O3UCOnQA2rUDoqIAkwnQBeFIe6sV2LdPe5dbC/sGfdGiRR57t9298sorrp/vu+++Rht0p+LiYhQXF3t97qGHHsJtt93W9EKJiIiIiMKMLAMWC/53GyzHedTbtzv+FBY6nms+PYCoAFUamTIzgd69HU10VhaQnu74k5AAJCYCrVo5muhgNNDkXdg36IH0+uuvY8yYMVi+fDn27duHkydPoq6uDh07dkRubi7uvvtujBkzRukyg0Kv16Nnz548v568Yj5IhPkgEeaDRJgP5ckyUFcHnDrlONd61y5g2zbgp5+ATZuUri5yxMcD2dmOZrp7d0cznZrqOLQ7Lg5o2xYwGNhIu9Pq9iOibrOmVpWVlYiPj/e4vD4RERERUSDIsuMQ8fJyYM8exwXMCguBrVsdDTcFXseOjoa6b19HU52Z6Ti8OzHx10O7NdY3UhB46wO5B538YrPZUFhYiCFDhvh1iwKKLMwHiTAfJMJ8kAjz4UmSHIeEHzniuFL41q2Ovdg//MArhgdCu3bAJZcA/fo5GuuuXR17qJOSHHupo6O5h1pLtLr90E6lpCi9Xo/U1FTNHSJCocF8kAjzQSLMB4mEaz6c97zevx8oK/v1fOzlywG36w5TEwweDOTkOJrrbt0ce6zbt3c03UYj91ZHIq1uP3iIuwrwEHciIiIibZJlR1O9d++vjfbq1YCP6wmTF927A0OGAAMHOn7u0sWx1zohwdFcc681hSse4k7NZrPZsHbtWowaNUpTh4hQaDAfJMJ8kAjzQSJK5MNuB86ccdzGa/NmYONGID8fsNlC8vaalJICDB8ODBrkODQ8KwtITv5173WwGmxuP0hEq/nQTqWkKFmWUVVVBR5wQd4wHyTCfJAI80EigciHLANnz/56YbT//hf45pvA1RguOnUCLr0UGDYM6NPHcf6184Jmaj1CmNsPEtFqPtigExEREZGm2GzAyZPAjz8Ca9cCBQU8pNypZ0/gsssch4z36vXruditWvFQcSItYINORERERIqTJODECaCoyHEO99KlQEmJCcA1ClemnDFjgAkTgAEDHOdlp6Q4Gm2DQenKiChY2KATERERUdBYLI4LqK1f7ziXO1IPLx84EBg3Dujf33EhtG7dAF4bmIjqY4NORERERE1msTjO6169Gvj6a2DNGqUrCq3Ro4ERIxznbPfr59i7zT3bRNRSbNCJiIiIyMVqBY4cAdatczTeX3yhdEWhMXAgMH6842rkl1wCdO7MhpuIQo8NOvnFYDBg+PDhMPBvKvKC+SAR5oNEmI/Qqq4Gdu50XFTt00/D/8JqV18NjB0LDB0KZGcDbdooXREFErcfJKLVfOhkrV13Pgx5u0E9ERERUVNUVzvu3b18OfDJJ47zvsPRhAmOP7m5jqY7Lk7pioiImsdbH6jSuxqS2litVixbtgxWq1XpUkiFmA8SYT5IhPnwj9XqaLj/8Q/HIdg6XcM/rVs7zoeeM0d7zXlKCnDffcDixY7D6yXJcf/yujorvvlmGerqrJBlx++++w54+GHH/wc255GN2w8S0Wo+uAddBbSwB12WZVRVVSEuLg463kST6mE+SIT5IBHmw9F0VlcDW7cC//mPowm32ZSuKjAyM4EpUxy3Cxs8GEhKatq9uJkPEmE+SEQL+fDWB/IcdPJbTEyM0iWQijEfJMJ8kEi450OWgXPngI0bHYee//vfSlfUctHRwA03AJMmAZdeCqSnN63xbopwzwe1DPNBIlrMBw9xJ7/YbDbk5+fDFi5f6VNAMR8kwnyQSLjko6oKWLUKuPPOhoee6/VAQgKQl6eN5rxrV+DJJx3rU1UF16Hl7n9qaoCPPgKmTQMyMoLXnIdLPig4mA8S0Wo+uAediIiIqBE2G7BvH7BkCfD//h9w/LjSFTVPnz7A9dc7viwYMMCxJ5yIiNSDDToRERERgPPnHYehv/ee4xZkWtO6NTB9OnDVVY4LqMXHK10RERE1FRt0IiIiigiyDJw96zh0+803gdWrla6oaYYPd5z3nZcHdO/uOHSeiIjCCxt0IiIiCitnzjia79deA9auVboa/02a5GjAr7gCuOii4J3XTURE6sUGnYiIiDTHYgF+/NFxSzKtHI4+ahRwyy2OPeCdOytdDRERqREbdCIiIlIlux04dgz4+GNgzhzHlcPVLCkJmDXLcRG2fv24B5yIiJpOJ8uyrHQRkc7bDerVRpZl2Gw2GI1G6PgvDqqH+SAR5oNEZFnG+fM2FBcb8dprOnz2mdIViU2aBNx6q2MveLt2SlcT/rj9IBHmg0S0kA9vfSD3oJPfLBYL4uLilC6DVIr5IBHmgwDHVdJXrgSee85xeLqDDoBJwaoauvlmx/3MR4zgbcjUgNsPEmE+SESL+eD1P8kvNpsN69atg81mU7oUUiHmg0SYj8hTVQV8/jnQu7fjMG/nn7g44Jpr3Jtz5dx+u+PLgro6x9Xd3f988glw+eVsztWA2w8SYT5IRKv54CHuKqCFQ9yJiIjqq64G1qwB/vxnYOtWpatpaOJEYOZMx39jYpSuhoiIyJO3PpB70MkvkiTh1KlTkCRJ6VJIhZgPEmE+tE+SgC1bgKlTPfeIt27tOBdbyeY8KQl49VWgrKzhnvBvvwWuvZbNuZZx+0EizAeJaDUfbNDJL3a7HRs3boTdble6FFIh5oNEmA/tkGWgvNzR8Lo34gYDMGQIsGiRcrVNmgSsWNHwkPRTp4CHHgJSUpSrjYKH2w8SYT5IRKv54EXiiIiIIpDVCmzf7jg8/dtvla7mVzNnAvfdB/Tpw9uUERFR5OEedCIiojBXXQ0sXAi0bfvrXvGoKGDwYOWa80ceAfbtA+rqrPjyy69QV2eFLAPz5gF9+7I5JyKiyMQ96ERERGGkogL48EPg4YeVrsThwQeBe+4Bunf3/rzVGtJyiIiIVI0NOhERkUadOgXMnw8884zSlQA33ug4F3zoUO79JiIiai426ERERBpgNgP//Cfw2GPK1tG1K/D008ANN/Dq6ERERIHGBp38otPpEBcXBx13i5AXzAeJMB9Nd/488PnnwB13KFvHb38LPP64oykP1vQxHyTCfJAI80EiWs2HTpZlWekigmnx4sX473//ix9//BE///wz6urqXM81d9V//PFH/O1vf8PatWtRUVGBdu3aYejQobj//vsxbty4Ji/P2w3qiYgoMtjtwNq1wJ13AgcPKlODyQS88QZw222Oe5sTERFR8HnrA8P+Ku7PP/88FixYgK1bt3o058317rvvYujQoVi0aBGOHz+Ouro6nDp1CkuXLsX48ePxjBpOBAwCSZJw+PBhSJKkdCmkQswHiTAfno4cAe6669erqRuNwNixoWvO+/YFli0DbLZf7yVeV+e4vZkSzTnzQSLMB4kwHySi1XyEfYOu0+nQtWtX3HTTTbjssstatKyioiLMmjXLNcnDhg3DX/7yF0yaNMk15tlnn8WyZcta9D5qJEkSysrKNBdwCg3mg0QiOR9Wq+NQdWczrtMBGRnAu++G5v1HjnTsnZekX5vx4mIgLw8wGEJTQ2MiOR/UOOaDRJgPEtFqPsL+EHeLxYKY/13FZvbs2ZgzZ47ruaau+k033YTPPvsMANClSxeUlJQgKioKADBixAisX78eADB06FBs2rTJ7+XyEHciovBw4gTwwgvAm2+G/r2HDgVee41XUSciItKKiDzEPSZAl5i12+0ee8avvPJKV3MOANdff73r582bN+PUqVMBeV+1sNvtKCkpgd1uV7oUUiHmg0TCNR+SBPz0E3Dxxb/uHe/UKTTNea9eQH6+4/x1557xTZuAYcO015yHaz4oMJgPEmE+SESr+Qj7Bj1QDhw4gAsXLrgeZ2VleTxf//GOHTtCUleoSJKE3bt3a+4QEQoN5oNEwiUfdXXA11//2owbDMCAAY5DxoPtvfeA2tpfm/FffgEmTQL0YfC3eLjkg4KD+SAR5oNEtJoP3mbNTxUVFR6P6x+KHhcX5/HYbDb7XFZtbS1qa2tdjysrKwEAVqsVVqu1wXi9Xg+DweD69sdgMMBms/k8RN9gMECv18Nms0Gv10Ov13tdrpPR6IiBzWbz+Nmd8/VWqxUmkwmSJEGSJBiNRkiS5PObKZ1OB6PR6FG73W73+UFxrqt77f6sq9Vq9Vm7r3V1rkdjtbuvqz+1KzlP7kI5T06+6uc8qWOelPo8uf//0tI8WSzAJ5/oMGtWaP+qvOce4PHHbejYseG6Wq3h+3nyNl/8PKlvnhqrPdDz5FyO3W73WA/Ok7rmSanPk6/tB+dJXfPkz7oGY56c7HY7TCaTKufJ6999PpdCHupPZmOPRffbmzt3rse58E4FBQWIjY1t8Pv09HT0798fO3bsQExMDHr16oXCwkKUl5d7XX5OTg4yMjKwdu1aZGdnIzk5GQUFBT5DM2bMGMTExCA/Px95eXmwWCxYtWqV17GrVq3C5MmTYTabUVxcjLFjx6K0tBRFRUVexyclJSE3Nxd79+6FxWJxrceRI0e8ju/Zs6dr/VJTU13rUVVV5XX88OHDXes3cuRI13r44ly/devWudZj48aNXsfGxcW51q+srMy1Hrt37/Y6Xk3zZDQaQzpPKSkpAIAVK1Z4Hc95Usc8Kfl5clLzPC1fvhYFBRl4772LhesQSMnJF/DiixWYPj0dGzducM3TypVrsXVrZGz3nJ8Pb9sPfp7UM09KbfcSExMBAPv370ddXR3nyY2a5knpz1P97QfnqcjreKXnqb5gz1N2djYAx/ajb9++qpyn6urqBuPD/iJx7lpykbg9e/agZ8+ersd///vf8eCDD7oeL1myBFOmTHE9LigowPjx470uy9se9LS0NJjNZq8XiVPDN3VWqxUrVqzA+PHjERsby2/qBLVH4jeqdrsd+fn5GD9+PEwmk8915Tw1FAnffDu3H3l5eTAYDKqZJ4sFmD9fwsMPh+5y5vfea8dTT0no0OHX36llngBlPk/V1dWuv1/qbz/4eVLPPCm5B72goAATJ06EyWTiPHmpXQ3zpOQedG/bD86TuubJn3UNxjxJkoT8/HxMnDgRrVq1UuU8VVZWIjEx0eMicdyD7qeuXbuidevWrvPQ9+/f7/F8/cf9+vXzuazo6GhER0c3+L3JZPLa3DgZ3O6J4wyCiPsY0XK9jfE13vl7Z3Dr/+yLe+0Gg8HjsTfutfuzrv7U7m28P7W7j/GndjXMk1Oo5sm5MW0sw5wn7/h58i2Q82S3Ax99BNxxh8c7NLrMlvj0U+CGG9zPFTf4fM9InyfR9oOfJ+8ibbvnrJ/z5Elt8+T+c6jmydf2g/PkXaRs95zNu3OMGufJ22vC4PIygTV79mzodDrodDpkZma6fm8wGDzud7506VLXXnBZlvH555+7nhsyZAg6duwYspqJiKghWQa+++7Xi7oZjfWb88AaOBDYuvXXC7nJMnDTTeFxITciIiIKjbDfgz5v3jzX3u0NGzZ4PPfHP/7R9fOTTz6JhIQE4bIef/xxfPHFF7Db7Th8+DBGjx6NK6+8EuvWrUNhYaHHssKNXq9Henp6o99qUWRiPkgklPnYuxe45hrHVc6D7YYbgFdfBTp3Dv57hTNuP0iE+SAR5oNEtJqPsD8HffTo0VizZk2j4w4ePIjMzEzMdjtPPSMjA4cOHfIYt2DBAsyaNcvn+QtPPPEEnn/++SbV6O0G9URE1Lhz54A5c4C//z3473X33cALLwDt2wf/vYiIiCj8eesDtfV1ggrcfffd2LRpE2644QZcdNFFMJlMSExMxOTJk/Hdd981uTnXCrvdjp9++snnhRsosjEfJBLIfMgykJ//62Hr7doFrzm/5x7gzJlfD1efP5/NeTBw+0EizAeJMB8kotV8hP0h7qtXr27S+NmzZ2P27NnCMUOGDMFnn33W/KI0KiYmRukSSMWYDxJpST4qKoDp04FlywJYkBfTpwOvvAKPK6xTaHD7QSLMB4kwHySixXyE/SHuWsBD3ImIfiVJwLffApMnB/d9xowBPvwQSEsL7vsQERERecND3KnZbDYbNmzYILy/H0Uu5oNE/MlHVZXjHG+dDjAYgtOcd+jgeZX1lSvZnKsBtx8kwnyQCPNBIlrNR9gf4k6BIcsyysvLfV4cjyIb80EivvJRUgIMGgRcuBC89/74Y8etzhq5xSspiNsPEmE+SIT5IBGt5oN70ImIKCTsdmDJkl8v8Na7d+Cb89/9Djh79te95NOmsTknIiIi7eAedCIiChqbDXjmGT3mzr0mKMs3GIA1a4BLLw3K4omIiIhCinvQiYgooM6dcxxWrtMBJhMwd25gd2E/9BBQXe3YQ26zsTknIiKi8ME96ERE1GIVFcCECcC2bcFZ/oYNwLBhjqafiIiIKFxxDzoRETVLaSnQrZujaU5MDGxzfvXVnueSDx/O5pyIiIjCH/egk18MBgNycnJg4NWWyAvmI3IcPw707w+cPBn4Zb/1FjBjBmDk30wRhdsPEmE+SIT5IBGt5kMna+2682HI2w3qiYjUoqwMGDsW2LMn8Mv+4QeeQ05ERESRyVsfyEPcyS82mw0rV66EzWZTuhRSIeYj/Jw9Cwwe7DisvHPnwDXnKSnAoUO/HrrO5py4/SAR5oNEmA8S0Wo+2KCTX/R6PbKzs6HXMzLUEPMRHurqgJtvdjTlCQnAjz8GZrnjxskoKSmH3S6hrAzIyAjMcik8cPtBIswHiTAfJKLVfPAQdxXgIe5EpBSbDXjxReCppwK73KlTgffeA2JiArtcIiIionDBQ9yp2axWK5YtWwar1ap0KaRCzIf2LF/+633KA9Wcz5oFWCyOQ9cXLvy1OWc+SIT5IBHmg0SYDxLRaj54rVzym9bO36DQYj7Ub98+oHv3wC5zxgzg9deBVq3E45gPEmE+SIT5IBHmg0S0mA/uQSciCmPV1cA11zj2lgeqOb/lFsdyZRlYsKDx5pyIiIiI/MM96EREYcZ5iPkttwRumWPHAl98AfAyGURERETBwwadiChMHDsGpKYGbnlJSUBRkePWaEREREQUfDzEnYhIw2QZ+NOfHIewB6o5377dsdxTp9icExEREYUS96ATEWlQcTFw8cWBW96iRcANNzgafSIiIiJSBu+DrgJauA+6LMuoqqpCXFwcdPwXPNXDfISG3Q48/LDjqumBcOedwPz5gDHIX9UyHyTCfJAI80EizAeJaCEf3vpA7kEnv8U4b2pM5AXzETyHDgFdugRmWfHxwK5doT90nfkgEeaDRJgPEmE+SESL+eA56OQXm82G/Px8Td5LkIKP+Qg8WQZefdVxyHkgmvOlSx3LPHs29M0580EizAeJMB8kwnyQiFbzwUPcVUArh7jbbDYYjUbVHiJCymE+Auf8ecf9yk+caPmyrr7acW650vcpZz5IhPkgEeaDRJgPEtFCPrz1gdyDTn6zWCxKl0Aqxny0zJo1jr3lcXEtb863bXPsLf/qK+Wbcyfmg0SYDxJhPkiE+SARLeaDDTr5xWazYdWqVZo7RIRCg/loHlkGHn/c0ZiPHt2yZd13H1BX51hm//4BKS9gmA8SYT5IhPkgEeaDRLSaD14kjogoxM6fB3JygP37W76sn38GsrNbvhwiIiIiUh73oBMRhUhJya+HsbekOZ86FaipcewtZ3NOREREFD7YoBMRBdnXXzsa8969W7acFSscTfnChUB0dGBqIyIiIiL1YINORBQEsgw8+6yjMb/mmuYvJyEBOHPGsbxx4wJXHxERERGpDxt0IqIAstuBq64C9HrgmWeav5zZswFJAk6fBtq1C1R1RERERKRmvEgc+c1oZFzIt0jPR3W14/7lx461bDkbNgDDhwemJjWJ9HyQGPNBIswHiTAfJKLFfOhkWZaVLiLSebtBPRFpw+nTQIcOLVuGTgecOgUkJgamJiIiIiJSP299IA9xJ79IkoRTp05BkiSlSyEVisR8HDvmaKxb0pxPmwbU1joOZQ/n5jwS80H+Yz5IhPkgEeaDRLSaj4hp0Pfs2YM777wTmZmZiI6ORmJiIsaPH4/PPvusScs5dOgQdDqd8I8WD6VojCRJKC4u1lzAKTQiKR8HDzoa89TU5i/jH/9wNOUffwxERQWuNrWKpHxQ0zEfJMJ8kAjzQSJazUdEHOKen5+PKVOmoKamxuvz06dPx/vvvw+dTtfosg4dOoQuXboIxxgMBthsNr/r4yHuROq3dy/Qo0fLlrFmDTBqVGDqISIiIiJt89YHht+u3nrKysowbdo0V3Pep08fTJ06Fbt27cKnn34KAPjwww8xePBg3HvvvU1adlZWFmbNmtXg93p9+B2YIEkSSktLkZaWFpbrRy0TzvnYvRvo1atly9i3D+jaNTD1aFE454NajvkgEeaDRJgPEtFqPsK+QX/jjTdw7tw5AEBcXBzWrVuH9u3bA3A00p988gkAYO7cuZg5cyYMBoPfy05LS8Mf//jHwBetQna7HUVFRUhJSdFUwCk0wjEfgdhjXl4e3ueW+ysc80GBw3yQCPNBIswHiWg1H9qptJm+/vpr18+jR492NecAMGXKFNfPZWVl2Lp1a5OWvW3bNlx00UUwmUxISkrC+PHjsXDhwpYXTUSKOXLEcY55c5vz+HigqgqQZTbnRERERNQ0Yd2g19bWYvfu3a7HWVlZHs/Xf7xjx44mLb+qqgonT56EzWaD2WzG999/j2nTpmHq1KmauxgBUaQrL3c05hkZzXv9xRcDNTXA2bNAmzYBLY2IiIiIIkRYH+J+5swZuF8Dr/4F2OLi4jwem81mv5ar0+kwdOhQDBgwABdddBEOHTqEhQsXwmKxAAAWLVqEUaNG4Z577vH6+traWtTW1roeV1ZWAgCsViusVmuD8Xq9HgaDAXa7HcCvF6HzdX0/g8EAvV4Pm80GvV4PvV7vdblOzqvO22w2j5/dOV9vtVphMpkgSRIkSYLRaIQkSa7a6nNe1d69drvd7vMLDOe6utfuz7parVaftftaV+d6NFa7+7r6U7uS8+QulPPk5Kt+Nc+TxWJAvU1Bk4wcKWH5crvrauyyrN55Uurz5J4Lfp58r6vS8+ReuxLz5G2+OE/qm6fGag/0PDmXY7fbPdaD86SueVLq8+Rr+8F5Utc8+bOuwZgnJ7vdDpPJpMp58vp3n8+lhIH6E9DYY3+u4t6xY0ccOnQI6enpHr9/4IEHMHToUNfF6N5//32fDfrcuXMxZ86cBr8vKChAbGxsg9+np6ejf//+2LFjB2JiYtCrVy8UFhaivLzc6/JzcnKQkZGBtWvXIjs7G8nJySgoKPAZmjFjxiAmJgb5+fnIy8uDxWLBqlWrvI5dtWoVJk+eDLPZjOLiYowdOxalpaUoKiryOj4pKQm5ubnYu3cvLBaLaz2OHDnidXzPnj1d65eamupaj6qqKq/jhw8f7lq/kSNHutbDF+f6rVu3zrUeGzdu9Do2Li7OtX5lZWWu9XA/KsOdmubJaDSGdJ5SUlIAACtWrPA6Xo3ztHXrDlx3XTaOHfP/uhPuBgw4iSee2AyjUcb33//6ezXPk5KfJyd+nhpS0zwpsd1z/n/3tv3gPKlnnpT6PCX+71yh/fv3o66ujvPkRk3zpPTnqf72g/NU5HW80vNUX7DnKTs7G4Bj+9G3b19VzlN1dXWD8U2+zdqzzz7r+jkjIwPTp08Xji8oKMCmTZtcj59++ummvF2L1NbWIiYmxtWIP/DAA3jttddcz2/btg0DBw50PX777bdx1113Nfv9Jk2ahG+//RYAEBsbiwsXLvisq/4e9LS0NJjNZq+3WVPDN3VWqxUrVqzA+PHjERsby2/qBLVH4jeqdrsd+fn5GD9+PEwmk891VcM86XR63HCDAV9+6fPthfLygM8/t8Lo4+tNNc+TknvQV6xYgby8PBgMBn6efKyr0vPkXnsot3vV1dWuv1/qbz84T+qZJyX3oBcUFGDixIkwmUycJy+1q2GelNyD7m37wXlS1zz5s67BmCdJkpCfn4+JEyeiVatWqpynyspKJCYmtuw2a7Nnz/bY07xlyxa8+eabPvc+L1++HG+88YbrcSgb9OjoaPTo0cP1zcr+/fs9nq//uF+/fi16P/cJdz+swltd0dHRDX5vMpm8NjdO7leYdwZBxH2MaLnextQfr9PpkJSUhKj/HcfrDG79n/2p3WAwNHq1fPfa/VlXUe2i8f7U7j7Gn9qVnKf6QjVPkiS58iFaZ6Xn6eWXgUceafRtvRo3DsjPBxwlaXOe6v/sS6Dnybn90Ol0/DwJKD1P7kI5T1FRUY1uPzhP3kXC58m5/TAaja76OU+e1DBPTqH+PLn/+9Tb6zlP3kXKdk+WZdf2w9/aQz1P3l7T7IvEybIMWZYxb9483HDDDR57hH2NVcJVV13l+nn16tWoqKhwPf7ss89cP6ekpGDQoEEAfv0SQqfTITMz02N5L730En744YcG7/Pzzz9jzZo1rsfOQyrChdFoRG5url/Bpsij9nysXOm4AFxzmvNBgwCLBVixwtmcU1OpPR+kLOaDRJgPEmE+SESr+Wh2g+5sYGVZxhdffIHx48fj7NmzASwtMB544AHXxeDOnz+PUaNG4bnnnsPUqVPx+eefu8Y9+uijjX57BAAbNmzAyJEjcfHFF+OBBx7A888/jzvvvNPj/HMAPs8/1yq73Y6SkhKfh51QZFNrPg4ccDTml1/e9Nd26gScPw9s2QK0ahX42iKJWvNB6sB8kAjzQSLMB4loNR/N/jpBlmWPJn39+vUYMWIEvv32W3Tu3DmQNbZI586d8fHHH7v28u/atavBYfa33nor7rvvviYtt7i4GMXFxV6fe+ihh3Dbbbc1u2a1cl6lnsgbNeWjuhpo3br5rz971nE/cwocNeWD1If5IBHmg0SYDxLRYj5adB9052HrziZ9165dyM3Nxc6dOwNSXKBcddVVKCoqwu233460tDRERUUhISEBY8eOxcKFC/HRRx81er6D0+uvv47XXnsNEydORNeuXdGmTRtERUUhLS0NN910E1auXIlXX301yGsUegaDAf379/frKAOKPGrJhywDV1/d/Ob82DHHMticB5Za8kHqxHyQCPNBIswHiWg1H02+irter3ddEO7qq6/Grl27sHfvXtfvZFlGfHw8vvrqK4waNQoPPfQQXn/9dceb6XSaO8QgFCorKxEfH+9x9T61sdvt2LFjB/r166e5kFPwqSEfH34I3H578177889AmF02QlXUkA9SL+aDRJgPEmE+SEQL+fDWB7ZoD3qXLl2wfv16DB482GNv+rlz5zBx4kQsXry45VWTKkiShCNHjvi8lQFFNiXzceiQ4zzz5jTnX3/t2GPO5jy4uP0gEeaDRJgPEmE+SESr+WhRgw4AiYmJWLVqFSZNmuTRpNfW1uLmm2/GN9980+IiiYjqs1qBhASgS5emv3bOHEdj7naTByIiIiIixbW4QQeA2NhYfP3115g+fbpHky5JEg4cOODzHulERM3x6qtAVJTjYm5NkZMDSBJQ7zqRRERERESqELCbwhkMBrz//vvo1KkT/vrXv3pc4Z0NOhEFwp49QM+ezXvtmTNAu3YBLYeIiIiIKKACsgfd3QsvvIA333zT1ZSzOSeilrLbgQ4dmtec//yz43B2NudEREREpHYBb9AB4N5778WiRYsQFRUVjMUTUQT58EPAaAROn27a6956ixeAIyIiIiJtafIh7qNGjXLtFe/WrZvPcVOmTEFSUhKuvfZanG3qiaKkOnq9Hj179vT7fvEUWYKRjyNHgIyMpr9u8GBg/XrAZApYKdRC3H6QCPNBIswHiTAfJKLVfDT5PuhNdfbsWZw7d871OKM5/+IOc1q4DzpRKF19NbB0adNfd+IE0LFj4OshIiIiIgq0gN8H3R/t2rVDRkaG6w9pk81mw4YNG2Cz2ZQuhVQoUPnYscNxT/OmNueffOI4nJ3NuTpx+0EizAeJMB8kwnyQiFbzEbCruFN40+v1SE1N1dwhIhQaLc2H1QokJzf9tmk9egC//AIwlurG7QeJMB8kwnyQCPNBIlrNh/AQd4PBENg30+k09w1GKPAQd4pkq1cDY8Y0/XWlpUDnzgEvh4iIiIgoJJp8iLssywH/Q9pks9mwcuVKfsFCXjUnH3Y7YDA0vTmfP99xODubc+3g9oNEmA8SYT5IhPkgEa3mo9FD3AN1H3M259omyzKqqqo4j+RVU/Px6afAzTc3/X2sVsct10hbuP0gEeaDRJgPEmE+SESr+fDrn7ruKxWohp2IIo/N1rzbn61dC4wcGfh6iIiIiIjUpMlnzPPQdiJqjm++aXpz3qcPIElszomIiIgoMvjVoOt0Otee8+joaEybNg1r166FJElN+mO324O6MkSkPjab49ZpV13VtNf98guwc6fjtUREREREkUDYoGdmZnrsAdfpdKirq8PChQtx2WWXoV+/fvjHP/6BqqqqkBRLRNryww9N32t+992Ovea9egWnJiIiIiIitRI26Pv378eyZctw5ZVXQq/XexyqLssyiouL8fvf/x4pKSmYMWMGtm7dGvSCiUj9ZBkYOLDph6YfOeK4Sjv3mhMRERFRJBLeB93d0aNHsWDBArz33ns4fvy448U6ncfedQAYMGAAZs2ahZtvvhkxMTFBKju8aOE+6JIkwWw2IzExEXp9ky9dQGHOPR9Hj+qRkdG01//2t8A//xmc2kh53H6QCPNBIswHiTAfJKKFfHjrA/1u0J1sNhu++OILLFiwACtXrnQsxK1Rdz5u27Yt7rjjDrz66qsBXIXwpIUGncgfjz0GvPhi015TWsp7mhMRERFR5PHWBzb5qwSj0YgbbrgB33//PX755Rc88MADaNeunceF5GRZxrlz5zB//vzArgEpxmq1YtmyZbBarUqXQipUWWmFTte05nz6dMe55mzOwx+3HyTCfJAI80EizAeJaDUfTd6DXl9lZSXmzZuHp59+GjabzfV7WZbRqlUrVFdXt7jIcKeFPeiyLKOqqgpxcXGuL2KIAGD5ciAvr2mvOXgQyMwMSjmkQtx+kAjzQSLMB4kwHySihXx46wONzV3Yli1bMH/+fCxatAgWi8XrGKOx2YsnFeI1BcidLAPDhgGFhf6/ZsQIYO1aXgQuEnH7QSLMB4kwHyTCfJCIFvPRpEPcq6ur8c4772DgwIEYNmwYPvjgA1RXV7vOP3fekq1z58549tlnsWfPnqAUTaFns9mQn5/vcZQERS6zGdDrm9acb9wIrFvH5jwScftBIswHiTAfJMJ8kIhW8+HXLu6ff/4Z8+fPx8cff4yqqiqPK7c7LxCn0+lwxRVXYObMmZg8ebJqr5RHRC3z738Dt93WtNfYbIDBEJx6iIiIiIjChbBB/+ijjzB//nxs2rQJADwac+fe8o4dO+K3v/0tZsyYgYym3luJiDRDloGePYG9e/1/zdtvA3fdFbyaiIiIiIjCibBBnz59eoN7nTsb89GjR2PWrFm47rrreK45UZg7exZISGjaa8xmoEOHoJRDRERERBSW/Oqs3W+fFh0djeuvvx49e/bEL7/8gl9++aVJb/j00083vUoiUszSpcDVV/s/fuJE4Ntvg1cPEREREVG48qtBd78TW11dHT799NNmvyEbdCLtuOYa4Ouv/R+/erUNl13GI2qIiIiIiJqjyf+Sbslt09V6/zki8lRXB0RHN+01ixZ9g9zcicEpiIiIiIgoAuhkQcet1+sD1lQ7r/Rut9sDsrxw4u0G9WojyzJsNhuMRiO/aAlz27cDOTn+j7/rLmDBAuaDfOP2g0SYDxJhPkiE+SARLeTDWx/Y6L3QnBeFa+kf0j6LxaJ0CRRkr7zStOZ8yxbHldoB5oPEmA8SYT5IhPkgEeaDRLSYD+Eh7s8880yo6iCVs9lsWLduHSZMmACTyaR0ORRgsgxkZAClpf6/5sIFIDbW8TPzQSLMB4kwHyTCfJAI80EiWs2H8BB3Cg0tHOJO4ev8eSAuzv/x114LfPFF0MohIiIiIooIzTrEnQgAJEnCqVOnIEmS0qVQAO3f37Tm/NtvvTfnzAeJMB8kwnyQCPNBIswHiWg1HxHToO/Zswd33nknMjMzER0djcTERIwfPx6fffZZs5b3448/YurUqUhJSUF0dDQ6duyIq6++Gt9//32AK1cHu92OjRs38iJ/YeTjj4Fu3fwfbzY77nHuDfNBIswHiTAfJMJ8kAjzQSJazUdENOj5+fm45JJL8N577+Hw4cOoq6tDRUUFvv/+e9x00024/fbbm3Qhu3fffRdDhw7FokWLcPz4cdTV1eHUqVNYunQpxo8fz3P3SfWuvRa49Vb/xur1gCQBHToEtSQiIiIioogX9g16WVkZpk2bhpqaGgBAnz598Oyzz2Lq1KmuMR9++CH+8Y9/+LW8oqIizJo1y3WoxLBhw/CXv/wFkyZNco159tlnsWzZsgCuBVFgSBKg0wFffeXf+CefBOx2x2uIiIiIiCi4hFdxDwdvvPEGzp07BwCIi4vDunXr0L59ewCO+7x/8sknAIC5c+di5syZMBgMwuXNnTsXNpsNANClSxesWbMGUVFRAIARI0Zg/fr1AIDnnnsOkydPDso6ETVHVRXQlGsQbtkCDBoUvHqIiIiIiMhT2O9B//rrr10/jx492tWcA8CUKVNcP5eVlWHr1q3CZdntdo8941deeaWrOQeA66+/3vXz5s2bcerUqRbVThQo+/c3rTk/d47NORERERFRqIX1HvTa2lrs3r3b9TgrK8vj+fqPd+zYgSFDhvhc3oEDB3DhwoUmLW/cuHFe66qtrXU9rqysBABYrVZYrdYG4/V6PQwGg+sCBwaDATabzed58waDAXq9HjabDXq9Hnq93utynYxGRwxsNpvHz+6cr7darTCZTJAkCZIkwWg0QpIknxdf0Ol0MBqNHrXb7XafV1N0rqt77f6sq9Vq9Vm7r3V1rkdjtbuvqz+1KzlP7pzrt3SpjGuvFR8Z4q621o6oqKbNk5Ov+jlPjc9TOH+e3P9/cZ58r6vS8+ReuxLz5G2+OE/qm6fGag/0PDmXY7fbPdaD86SueVLq8+Rr+8F5Utc8+bOuwZgnJ7vdDpPJpMp58vp3n8+lhIEzZ854TEL9e4zH1bu/lNlsFi6voqLC43Fzlzd37lzMmTOnwe8LCgoQGxvb4Pfp6eno378/duzYgZiYGPTq1QuFhYUoLy/3uvycnBxkZGRg7dq1yM7ORnJyMgoKCnyGZsyYMYiJiUF+fj7y8vJgsViwatUqr2NXrVqFyZMnw2w2o7i4GGPHjkVpaSmKioq8jk9KSkJubi727t0Li8XiWo8jR454Hd+zZ0/X+qWmprrWo6qqyuv44cOHu9Zv5MiRrvXwxbl+69atc63Hxo0bvY6Ni4tzrV9ZWZlrPdy/9HGnpnkyGo2YPHky/vhHC/7+99Y+/3+4mzEDeOihEuzc2fR5Sk1NhV6vx4oVK7yO5zyJ5ykSPk96vR46nY7z5IWa5kmJz5Pz/7u37QfnST3zpNTnKTExEXFxcThw4ABqa2s5T27UNE9Kf57qbz84T0Vexys9T/UFe54uvvhimEwmHDhwAH369FHlPFVXVzcYr5ObcvlyjTl+/DhSUlJcj5966ik899xzrsf79u1D9+7dXY//+te/4tFHH/W5vI0bNyI3N9f1+N1338Wdd97pevz9999j/PjxrseffvopbrrppgbL8bYHPS0tDWazuUHTD/CbOi19U6emebr2WhME20QPixbZceONBs6ToHZ+nsTrynlquK6cJ9+1c57E68p5ariunCfftXOexOvKeWq4rpwn37WHep4qKyuRmJiIc+fOufrAsN6D3r59e+h0OtdE1P+2x3louft4kQ717jPV3OVFR0cjOjq6we9NJhNMJpPP93e/gJ0zCCLuY0TL9Tam/nhJklBaWoq0tDQAcAW3/s/+1G4wGBq9GJ977f6sq6h20Xh/ancf40/tSs4TAMiy49Zo/jpwAOjSxVFzc+dJkiSUlZUhLS1N+P+T8+RduH+e3LcfnCfflJ4nd6GcJ4PB4JEPUe31f26sds6TJy1+niRJwuHDhz3ywXnypIZ5cgr156n+3y++xnOePEXKdk+SJBw9etTVv6hxnry9JqwvEhcdHY0ePXq4Hu/fv9/j+fqP+/XrJ1xe165d0br1r4cLt3R5WuJswHx9S0XqUFPTtOb8/HmgS5eWvy/zQSLMB4kwHyTCfJAI80EiWs1HWDfoAHDVVVe5fl69erXHeeSfffaZ6+eUlBQM+t9lq2fPng2dTgedTofMzEzXGIPB4HG/86VLl7oOVZdlGZ9//rnruSFDhqBjx44BXx+lGI1G5Obm+vXNEynj/HkgJsb/8XY70Nq/09MbxXyQCPNBIswHiTAfJMJ8kIhW8xH2DfoDDzzgunjb+fPnMWrUKDz33HOYOnWqR0P96KOPNnp4BwA8/vjjrnGHDx/G6NGj8fzzz2PSpEkoLCx0jXvyyScDvCbKstvtKCkp8XleCClr3z6g3jUKfZowoemHwTeG+SAR5oNEmA8SYT5IhPkgEa3mI+wb9M6dO+Pjjz92nfO9a9cuPP3001i0aJFrzK233or77rvPr+UNGDAAb731FnQ6HQBg06ZNeOqpp/Ddd9+5xjzxxBO4+uqrA7gWypMkCbt379bcISKRYOtWwO1ah0IvvAC4RTVgmA8SYT5IhPkgEeaDRJgPEtFqPsK+QQcch7kXFRXh9ttvR1paGqKiopCQkICxY8di4cKF+Oijjxq9IIG7u+++G5s2bcINN9yAiy66CCaTCYmJiZg8eTK+++47PP/880FcG6JfLVsG/O/MjEZ9/z3w+OPBrYeIiIiIiJpPWwfkt0CvXr3w/vvv+zV29uzZmD17tnDMkCFDPM5hJwq1+fOBWbP8G1tSAvTsGdx6iIiIiIioZSJiDzpRuJkzx//m/MwZNudERERERFoQMXvQicLF//0f8NFH/o2trm7ald2JiIiIiEg5bNCJNGTsWGDVKv/GShLwv2sZEhERERGRBrBBJ7/o9Xqkp6c36WJ6FFjduztup9aYdu0ch7WHEvNBIswHiTAfJMJ8kAjzQSJazYdOlmVZ6SIiXWVlJeLj43Hu3Dm0bdtW6XJIhWJjAYul8XETJgTnNmpERERERBRY3vpAbX2dQIqx2+346aefYLfblS4losiy4zB1f5rzmTOVa86ZDxJhPkiE+SAR5oNEmA8S0Wo+2KCT32J4tbGQkmXA3yNyXnoJmDcvuPU0hvkgEeaDRJgPEmE+SIT5IBEt5oOHuKsAD3Gn+iQJMBj8G/vRR8Cttwa3HiIiIiIiCiwe4k7NZrPZsGHDBthsNqVLCXtNac6XLVNHc858kAjzQSLMB4kwHyTCfJCIVvPBq7iTX2RZRnl5OXjARXA1pTn/4Qfg0kuDW4+/mA8SYT5IhPkgEeaDRJgPEtFqPtigE6lEU5rzbduA/v2DWw8REREREYUWG3QiFZBl/5vzXbuA3r2DWw8REREREYUeG3QihTVlz/n+/UBWVnDrISIiIiIiZbBBJ1JQU/acHzwIZGYGtRwiIiIiIlIQG3QihTTlPuelpUDnzsGth4iIiIiIlMXbrJFfDAYDcnJyYPB3dy81yujn12NHjqi/OWc+SIT5IBHmg0SYDxJhPkhEq/nQyVq77nwY8naDegpvffs6LvbWmLIyICUl+PUQEREREVFoeesDuQed/GKz2bBy5UrYbDalS9G84cP9a84PHdJOc858kAjzQSLMB4kwHyTCfJCIVvPBc9DJL3q9HtnZ2dD7e9I0eTVtGrBpU+PjDh8G0tODX0+gMB8kwnyQCPNBIswHiTAfJKLVfPAQdxXgIe6R4YkngLlzGx+3ezfQo0fw6yEiIiIiIuXwEHdqNqvVimXLlsFqtSpdiia9/rp/zfkvv2izOWc+SIT5IBHmg0SYDxJhPkhEq/lgg05+09r5G2qxZAnw4IONjyssBHr1Cno5QcN8kAjzQSLMB4kwHyTCfJCIFvPBBp0oiDZtAqZMaXzcunXA4MHBr4eIiIiIiNSLDTpRkOza5bhie2O++AIYMSL49RARERERkbqxQScKgtOnHfc6b8xHHwHXXhv0coiIiIiISAPYoBMFWFUV0KFD4+OefRa49dbg10NERERERNrABp0ogGQZ8OdOeQ88APz5z8Gvh4iIiIiItIP3QVcBLdwHXZZlVFVVIS4uDjqdTulyVEmWAb0fX3nl5gLr1we/nlBiPkiE+SAR5oNEmA8SYT5IRAv54H3QqUViYmKULkHVhgxpfExSUvg1507MB4kwHyTCfJAI80EizAeJaDEfbNDJLzabDfn5+Zq8l2AozJwJ/Phj4+NOngx+LUpgPkiE+SAR5oNEmA8SYT5IRKv54CHuKqCVQ9xtNhuMRqNqDxFRyocfArff3vg4mw0wGIJejiKYDxJhPkiE+SAR5oNEmA8S0UI+eIg7tYjFYlG6BNXZts2/5rymJnybcyfmg0SYDxJhPkiE+SAR5oNEtJgPNujkF5vNhlWrVmnuEJFgOnoUGDiw8XHHjwPR0cGvR0nMB4kwHyTCfJAI80EizAeJaDUfbNCJmqGuDkhLa3zc7t3ARRcFvx4iIiIiItK+sG/Qz549i6eeegrZ2dlo3bo12rZti4EDB+Kll15CTU1Nk5eXmZkJnU4n/PPDDz8EYU1ILWTZvz3iy5cDPXoEvx4iIiIiIgoPRqULCKaDBw9izJgxOHz4sMfvt23bhm3btuHTTz/FihUr0KFDB4UqJC0aMKDxMa++ClxxRfBrISIiIiKi8BG2DbokSZg6daqrOW/fvj1mzJiBmpoaLFiwABaLBT/99BNmzpyJxYsXN+s9Xn75Za+/79KlS7PrJnV77DGgqEg8Ji8PeOihkJRDRERERERhJGwb9O+++w6FhYWux59++inGjx8PAOjTpw9mzJgBAPj8889RUlKCXr16Nfk9/vjHPwamWNKE/HzgxRcbH7dsWfBrISIiIiKi8BO256B//fXXrp/btm2LcePGuR5PmTLF59im6Nq1K6KiotC2bVsMGTIEf/3rX1FdXd28gjXAaAzb73MadeQIMHly4+MkKfi1qFUk54Max3yQCPNBIswHiTAfJKLFfOhkWZaVLiIYLr30UmzYsAEAcMkll6Co3nHJ7dq1w7lz5wAAt9xyC/7973/7tdzMzMwG57S769OnD1avXo2kpCSfY2pra1FbW+t6XFlZibS0NJjNZtcN6t3p9XoYDAbY7XYAgMFggM1mg6+pMxgM0Ov1sNls0Ov10Ov1sFqtPutxBtdms3n87IvJZIIkSZAkCUajEZIkuWqrT6fTwWg0etRut9sh+ehknevqXrs/62q1Wv2q3X2Mcz0aq726WkLr1o1/l3X6tB0JCZwn0boGc57c19Wf2jlPvteV89QQ54nzxHniPNVfV85Tw3XlPPmunfMkXtdInafKykokJibi3Llzrj5Q9V8p7Nu3r0n3rktPT0dsbCwqKipcv/PW9MbFxbkadLPZ3KSaunXrhlGjRiEjIwOnT5/G4sWLcezYMQDArl27cO+99+Kzzz7z+fq5c+dizpw5DX5fUFCA2NhYr+vUv39/7NixAzExMejVqxcKCwtRXl7udfk5OTnIyMjA2rVrkZ2djeTkZBQUFPj8/zhmzBjExMQgPz8feXl5sFgsWLVqldexRqMRkydPhtlsRnFxMcaOHYvS0tIGX4A4JSUlITc3F3v37oXFYnGtx5EjR7yO79mzp2v9UlNTXetRVVXldfzw4cNd6zdy5EjXevjiXL9169a51mPjxo1ex8bFxWH06LF+NefvvFOAQ4eSkJAQmfOUlpaGlStXwmKxeB0f7Hlyrl9ZWZlrPXbv3u11PD9PynyeYmJiMG7cOM6TF2qaJ36eOE+A+uapW7duqKioQE1NDefJjdrmiZ8nzpPa5umSSy5BYWEh2rVrh969e6tynrwdfa36PeiJiYkezXZjVq1ahdGjR6Nnz57Ys2cPAGDEiBFYt26dx7jOnTujrKwMAHDFFVdg+fLlfi3f2/nqVVVVGDx4sCsgBoMBFRUViI+P97oMLe5Bt9ls2LBhA3JzcxETExMx39SNH2/E6tU+FwcAWL7chssvl1UxT+5C+Y2qJElYs2YNcnNzvR5KxG9U1TFPSn2enNuPyy67zJUXzlPDdVV6ntxrD+XnyWKxuP5+qb/94DypZ56U+jzZ7XZs2LABl156KYxGI+fJS+1qmCelPk/u/z51335wntQ1T/6sazDmSZZlrFmzBiNGjEB0dLQq58nbHvSwbdBzc3Nd38B4O8S9bdu2rm9/pk2bho8//rhFdb744ot47LHHXI8LCwsxePBgv15bWVmJ+Ph4j4kh5b39NnD33eIxTz0FPPdcaOohIiIiIqLw4a0PVP1F4sxmM2RZ9vvP6NGjAQD9+vVzLePgwYMe35aUl5d7HJrhPra56n/Poder/n9tk0iShMOHD/v8lirc7NrVeHPevTubc6dIywc1DfNBIswHiTAfJMJ8kIhW8xFeXaSbq666yvVzZWUlCgoKXI/rnx/uPnb16tXQ6XSuP4cOHXI9t2TJEnz88ccNDl+oqqrCBx984HocFRWFHj16BGhN1MFut6OoqMjnYSfhxGIB+vZtfFxJSfBr0YpIygc1HfNBIswHiTAfJMJ8kIhW86H6i8Q116RJkzBw4EBs3boVgOMw9rvvvhsWiwXz5893jbvuuuvQp08fv5Z55MgRPPTQQ/jTn/6ESZMmISsrC2azGYsXL3adzw4At956K+Li4gK7QhQSkgR4uU5fAzU1QJgdJEFERERERAoL2wZdr9fj008/dV0l7/Tp05g7d67HmEsuuQRvv/12k5d9/PhxvPfee16fGzVqFF5//fVm1UzKu/76xsfs2wdERwe/FiIiIiIiiixh26ADjtuhbd++HS+//DK+/PJLHDp0CHq9Hj169MCNN96IBx54ADExMX4v7/bbb0diYiKWLVuG7du34+TJk6isrERCQgJycnIwbdo03HbbbTAYDEFcKwqWxYuBr74Sj/nXv4CuXUNTDxERERERRZawbtABICEhAS+88AJeeOEFv8aPHj3a5+X327Vrh1tvvRW33nprIEskFSgtBW68UTzm2muB224LSTlERERERBSBeBYtRTxZBtLTGx+3ZEnwayEiIiIiosjFBp38otPpkJSUBJ1Op3QpAde+feNj6uqAMFz1gAnnfFDLMR8kwnyQCPNBIswHiWg1HzrZ1/HcFDLeblBPofG3vwF/+pN4zKFDQEZGSMohIiIiIqII4a0P5B508ovdbkdJSYnm7iMosmdP4835ggVszv0RjvmgwGE+SIT5IBHmg0SYDxLRaj7YoJPfLBaL0iUETHU10LOneMyoUcCMGaGpJxyEUz4o8JgPEmE+SIT5IBHmg0S0mA8e4q4CPMQ99Nq0AS5cEI+x2QDeMY+IiIiIiIKBh7hTs9ntdvz000+aO0TEm7lzG2/OKyrYnDdFOOWDAo/5IBHmg0SYDxJhPkhEq/lgg05+kSQJR44cgSRJSpfSIiUlwBNPiMesX+/fld3pV+GSDwoO5oNEmA8SYT5IhPkgEa3mgw06RQxZBnr3Fo+55RYgNzc09RAREREREbljg04Ro0OHxsf8+9/Br4OIiIiIiMgbNugUET74ADhzRjzm/PmQlEJEREREROQVG3QKe+XlwB13iMf8979A69ahqYeIiIiIiMgbNugU1mQZSE4Wj5kxAxg7NjT1EBERERER+cIGnfyi1+vRs2dP6PXaisxttzU+Zv784NcR7rSaDwoN5oNEmA8SYT5IhPkgEa3mQyfLsqx0EZHO2w3qqeU2bQKGDxePOX0aSEgITT1ERERERERO3vpAbX2dQIqx2WzYsGEDbDab0qX4pbq68eb8++/ZnAeK1vJBocV8kAjzQSLMB4kwHySi1XywQSe/6PV6pKamauYQkcbudz54MHD55aGpJRJoLR8UWswHiTAfJMJ8kAjzQSJazQcPcVcBHuIeWP/6FzB9uniMJAE6XWjqISIiIiIiqo+HuFOz2Ww2rFy5UvWHiJSXN96cnzzJ5jzQtJIPUgbzQSLMB4kwHyTCfJCIVvPBBp38IssyqqqqoOYDLvy5pdorrzQ+hppOC/kg5TAfJMJ8kAjzQSLMB4loNR9s0ClsPPts42P+8Ifg10FERERERNQcbNApLBw5AsyeLR5TXR2SUoiIiIiIiJqFDTppniQBGRniMd99B8TEhKYeIiIiIiKi5mCDTpr34IPi50eOBCZMCEkpREREREREzcYGnTRt717gzTfFY1atCk0tRERERERELcH7oKuAFu6DLkkSzGYzEhMToder43sdux0wGsVjfvoJyMkJSTkRTY35IPVgPkiE+SAR5oNEmA8S0UI+vPWBjbQ3RA56vR7JKrs/2cyZ4ufvuIPNeaioMR+kHswHiTAfJMJ8kAjzQSJazYc6v0og1bFarVi2bBmsVqvSpQAA9uwB3n1XPOaf/wxNLaS+fJC6MB8kwnyQCPNBIswHiWg1HzzEXQW0cIi7LMuoqqpCXFwcdDqdorX4c2j73r1At26hqYfUlQ9SH+aDRJgPEmE+SIT5IBEt5MNbH8g96OS3GJXcp+z3vxc//8c/sjlXglryQerEfJAI80EizAeJMB8kosV8sEEnv9hsNuTn58Nmsylax8GDwLx54jEvvRSaWuhXaskHqRPzQSLMB4kwHyTCfJCIVvPBBp00Q5KArCzxmMOHAZUewUJERERERCTEBp0045lnxM8/9hiQnh6aWoiIiIiIiAKNDTppQnk58Je/iMfMnRuaWoiIiIiIiIIhrBv0zZs3409/+hPGjBmD+Ph46HQ615/Vq1c3e7nHjx/HAw88gO7duyMmJgYJCQkYMWIE3n77bdjt9sCtAAEAZBlo7BaGhw+HphYiIiIiIqJgaeRmVdq2cOFCvP766wFd5o8//oiJEyfi9OnTrt/V1NRg/fr1WL9+PZYsWYIvv/wSrVq1Cuj7RrLG7mf+wAM8tJ2IiIiIiLQvrPegA0DHjh2Rl5eHadOmtXhZFy5cwG9+8xtXc56Wloann34aM2bMgMFgAAB89913+POf/9zi9yKH2lrgrrvEY/7+99DUQkREREREFEw6WZZlpYsIFovF4rr33erVqzFmzBjXc6tWrcLo0aObtLx58+bhnnvuAQDodDr88ssv6NmzJwDgySefxAsvvAAAaNWqFY4dO4aEhAS/luvtBvVqI8sybDYbjEYjdCG8THqHDoDbwQoN7NsHdO0asnLIB6XyQdrAfJAI80EizAeJMB8kooV8eOsDw3oPeqBvTP/111+7fs7OznY15wAwZcoU1881NTVYsWJFQN9bDSwWS0jfb906cXN+881sztUk1PkgbWE+SIT5IBHmg0SYDxLRYj7CukEPtB07drh+zqp3Q+76j93HhgObzYZ169bBZrOF5P1kGRg1Sjzm449DUgr5IdT5IG1hPkiE+SAR5oNEmA8S0Wo+VH+RuH379jXpf2p6ejpiY2ODUktFRYXr5/qHosfFxXk8NpvNPpdTW1uL2tpa1+PKykoAgNVqhdVqbTBer9fDYDC4rhBvMBhgs9ng6+wEg8EAvV4Pm80GvV4PvV7vdblORqMjBs5DQJw/1zdhwgTXz5IkQZIkGI1GSJLk8+r1Op0ORqPRo3a73Q5JkryOd67rLbdIEH1/9OOPVthsv66r1WoV1u5tXU0mk1+1u6+rP7UrPU9OzvUL5jw5azeZTJg4cSJkWfa6DpwndcyTcz0aW9dgzNPEiRM5TxqYJyU+T8Cvf7/UnzPOk3rmScnP0+TJk2G322G32zlPXmpXyzwp9Xnytv3gPKlvnhpb12DMk8lkwhVXXOH6nRrnydt7qL5BHzZsmEdj3JjmnFveHPUnt/5j0XkOc+fOxZw5cxr8vqCgwOuXC+np6ejfvz927NiBmJgY9OrVC4WFhSgvL/e6/JycHGRkZGDt2rXIzs5GcnIyCgoKfIZmzJgxiImJQX5+PvLy8mCxWLBq1SqvY41GIyZPngyz2Yzi4mKMHTsWpaWlKCoq8jo+KSkJubm52Lt3LywWi2s9jhw54nV8z549ERvbCwsX+m7OO3euwtGjK3H0KDB8+HDX+o0cOdK1Hr4412/dunWu9di4caPXsXFxca71Kysrc63H7t27vY6PtHlyrl9qairS0tKwcuVKn4cRcZ7UMU/O9aiqqvI6PpjzFBMTg3HjxnGevFDTPPHzxHkC1DdP3bp1Q0VFBWpqajhPbtQ2T/w8cZ7UNk+XXHIJCgsL0a5dO/Tu3VuV81RdXd1gvOovEpeYmBiQBj0QF4lLSUnB8ePHAQDXXHMNvvzyS9dzp0+fRocOHVyPn3jiCTz//PNel+NtD3paWhrMZrPXi8Sp4Zs6q9WKFStWYPz48YiNjQ3qN3VGo8FnrQBw4YIVJpPnuqrlmzql58ldKL9RtdvtyM/Px/jx42FyTo6XdeU8NRQJ33w7tx95eXkwGAycJx/rqvQ8udceys9TdXW16++X+tsPzpN65kmpz5PNZkNBQQEmTpwIk8nEefJSuxrmSanPk/u/T923H5wndc2TP+sajHmSJAn5+fmYOHEiWrVqpcp5qqysRGJiosdF4lS/B110qHio9evXz9Wg79+/3+O5+o/79evncznR0dGIjo5u8HuTyeS1uXFy3soN+DUUIu5jRMv1NsbXeOfv3Q9NdP/ZF/faDQaDx2N3H3wgrnHFCiA2tmFt/tTubbw/tbuPEdXupIZ5cgrWPDk5a3duTBvLMOfJu1DNU/2ffeE8ecd58i0Q8yTafnCevIu0z5Ozfs6TJ7XNk/vPoZonX9sPzpN3kbLdczbvzjFqnCdvr+FF4upZvXo1dDqd68+hQ4dcz1111VWun3fu3ImSkhLX488++8z1c6tWrTB+/PiQ1BtOzp8H7rhDPGbcuNDUQkREREREFGqq34PeEgUFBSgoKAAAlJaWejw3b948fPPNNwCAqVOnYtCgQY0ub/r06XjxxRdRWloKWZYxYcIE/Pa3v8WxY8fwz3/+0zVu1qxZaN++fQDXJDJceaX4edEt14iIiIiIiLQurBv0DRs24JVXXvH6nPse7+zsbL8a9DZt2uDzzz/HxIkTcfbsWZSWlja42Nu4ceN8nntOvpWUAGvW+H7+hReAhITQ1UNERERERBRqPMS9iYYMGYLi4mLcd9996Nq1K6Kjo9G2bVsMHz4c8+bNw/LlyxETE6N0mZrTu7f4+cceC00dRERERERESgnrPeizZ8/G7Nmzm/Sa0aNH+7y6n1NqairefPPNFlSmPTqdDnFxccLbxzWX29kBXm3aBAThbSmAgpkP0j7mg0SYDxJhPkiE+SARreZD9bdZiwSVlZWIj4/3uLx+pLBagago388PGgRs2RK6eoiIiIiIiELBWx/IQ9zJL5Ik4fDhwz7vNdhcl10mfn7t2oC+HQVJsPJB4YH5IBHmg0SYDxJhPkhEq/lgg05+kSQJZWVlAQ34vn3Axo2+n3/lFYCn82tDMPJB4YP5IBHmg0SYDxJhPkhEq/ngIe4qEKmHuDd2OgiTSURERERE4YqHuFOz2e12lJSUwG63B2R5//63+PmDBwPyNhQigc4HhRfmg0SYDxJhPkiE+SARreaDDTr5RZIk7N69OyCHiFitwG23+X6+SxcgM7PFb0MhFMh8UPhhPkiE+SAR5oNEmA8S0Wo+2KBTyD38sPj5XbtCUwcREREREZGasEGnkDp3DhDdQv7dd4FWrUJXDxERERERkVqwQaeQ6tRJ/PxvfxuaOoiIiIiIiNSGDTqFzM8/AxaL7+fXr2/8yu5EREREREThig06hYQsA/36+X6+SxcgNzd09RAREREREakNG3Tyi16vR3p6OvT65kXmvffEzxcVNWuxpBItzQeFN+aDRJgPEmE+SIT5IBGt5kMny7KsdBGRztsN6sOJJAEGg+/n77ij8QaeiIiIiIgonHjrA7X1dQIpxm6346effoLdbm/ya594Qvz8u+82syhSjZbkg8If80EizAeJMB8kwnyQiFbzwQad/BYTE9Pk11RVAS++6Pv5/HxAY0edkA/NyQdFDuaDRJgPEmE+SIT5IBEt5oOHuKtAOB/iPngw8OOPvp9n+oiIiIiIKBLxEHdqNpvNhg0bNsBms/n9moMHxc35tm0BKIxUoTn5oMjBfJAI80EizAeJMB8kotV8sEEnv8iyjPLycjTlgIusLN/Pde0K9O8fgMJIFZqTD4oczAeJMB8kwnyQCPNBIlrNBxt0CorCQvHzW7eGpg4iIiIiIiKtYINOQTF0qO/nbroJiI8PXS1ERERERERawAadAu7LL8XPf/RRSMogIiIiIiLSFDboFFA2G3Dddb6f/8c/AJMpdPUQERERERFpBRt0Cqi//lX8/MyZoamDiIiIiIhIa9igk18MBgNycnJgMBh8jpEk4M9/9r2Mr78GdLogFEeK8ycfFLmYDxJhPkiE+SAR5oNEtJoPnay1686HIW83qNei3/8e+H//z/fzTBoREREREZGDtz6Qe9DJLzabDStXroTNZvP6/Nmz4uZ8//7g1EXq0Fg+KLIxHyTCfJAI80EizAeJaDUfbNDJL3q9HtnZ2dDrvUfmN7/x/drWrYGsrCAVRqrQWD4osjEfJMJ8kAjzQSLMB4loNR88xF0FtH6I++nTQIcOvp8/ehRITQ1dPURERERERGrHQ9yp2axWK5YtWwar1drgudGjfb9u4EA255FAlA8i5oNEmA8SYT5IhPkgEa3mgw06+c3b+RtHjgA//+z7NatXB68eUhetnd9DocV8kAjzQSLMB4kwHySixXywQacWGTDA93MzZgBt2oSuFiIiIiIiIi1jg07NtmcPUFHh+/k33wxdLURERERERFrHBp2arWdP38899hgQFRW6WoiIiIiIiLSODTo1y65d4uf/8pfQ1EFERERERBQuwrpB37x5M/70pz9hzJgxiI+Ph06nc/1Z3cyrl2VmZnosx9ufH374IbArokJ9+/p+7p13AIMhdLUQERERERGFA6PSBQTTwoUL8frrrytdRlgwGo0YM2YMjEYjtmwRj73zztDUROrhng+i+pgPEmE+SIT5IBHmg0S0mg9tVdsMHTt2xMCBA9GuXTt88sknAV32yy+/7PX3Xbp0Cej7qEVMTAwAYMgQ32M+/BDQ6UJUEKmKMx9E3jAfJMJ8kAjzQSLMB4loMR86WZZlpYsIFovF4pqU1atXY8yYMa7nVq1ahdGjRzd5mZmZmTh8+DAAIFD/6yorKxEfH49z586hbdu2AVlmoFmtVuTn56NTpzwMHWryOS5800Qiznzk5eXBZPKdD4pMzAeJMB8kwnyQCPNBIlrIh7c+MKzPQQ/2NyZdu3ZFVFQU2rZtiyFDhuCvf/0rqqurg/qeSjEajcjLEzfn330XwoJIVZz50NohRBQazAeJMB8kwnyQCPNBIlrNR1g36MF24MABWK1WVFVVYcuWLXj88ccxePBglJeXK11aUKxaVSd8fsKEEBVCqmSxWJQugVSM+SAR5oNEmA8SYT5IRIv5UP3XCfv27YPNZvN7fHp6OmJjY4NYEdCtWzeMGjUKGRkZOH36NBYvXoxjx44BAHbt2oV7770Xn332mc/X19bWora21vW4srISgOMwDKvV2mC8Xq+HwWCA3W4HABgMBthsNp+H2BsMBuj1ethsNuj1euj1eq/LdXJ+q2Sz2Tx+dme1WjFxYmufy1i2zAartWE9Op0ORqPRo3a73Q5Jkrwux7mu7rX7s65Wq9Vn7b7W1WQyQZIkV22+apckCZIkudajsdqVnCd3zvVz1u7PujZ3nux2O1atWoXx48d7PYSI86SOeVLq82S1WrFq1Srk5eXBYDBwnnysq9Lz5F57KD9PFovF5/aD86SeeVLq82Sz2bBq1SpMnDgRJpOJ8+SldjXMk1KfJ+ffL/W3H5wndc2TP+sajHmSJMm1/WjVqpUq58nbe6i+QR82bBgqKir8Ht/cc8v99e2336JXr14ev3vuuecwePBg7N69GwCwZMkSnDt3DvHx8V6XMXfuXMyZM6fB7wsKCrx+uZCeno7+/ftjx44diImJQa9evVBYWOhzT31OTg4yMjKwdu1aZGdnIzk5GQUFBT5DM2bMGMTExLjO0XD+Y8ndvn3xAEZ7fT0AWK3LkJ/f8PdJSUnIzc3F3r17YbFYXOtx5MgRr8vp2bOna/1SU1Nd61FVVeV1/PDhw13rN3LkSNd6+OJcv3Xr1mHy5Mkwm83YuHGj17FxcXEYO3YsSktLUVZW5loP5zzXp4Z5cjIaja71Ky4udq1HUVGR1/EtnaeUlBQAwIoVK7yO5zypY56U/Dw5cZ4aUtM8KfF5cv5/97b94DypZ56U+jwlJiYCAPbv34+6ujrOkxs1zZPSn6f62w/OU5HX8UrPU33Bnqfs7GwAju1H3759VTlP3k6PVv1F4hITEwPSoAfqInG+vPjii3jsscdcjwsLCzF48GCvY73tQU9LS4PZbPZ6kTg1fFMXFeX73PMNGyQMGsRv6tQwT+5CvQc9Pz+fe9Ch7nlScg/6ihUruAdd5fPkXnsoP0/V1dVYsWIF96CrfJ6U3INeUFDAPeiC2tUwT0ruQfe2/eA8qWue/FnXYO1Bz8/PV/Ue9MrKSiQmJnpcJE71e9DNZrPSJfil/mTr9b5P74+OjkZ0dHSD35tMJuEVBg0Gg+tnZxBE3Mf4c+VC9zHuP2/eLH7d8OF6NHY5A/faDQaDx2Nv3Gv3Z1191d7YeOcHUMR9jD+1KzVP3rjX7s+6NneenBvTxjLMefIuVPNU/2dfOE/ecZ58C8Q8ibYfnCfvIu3z5Kyf8+RJbfPk/nOo5snX9oPz5F2kbPeczbtzjBrnydtreJG4elavXg2dTuf6c+jQIddzS5Yswccff9zg25Gqqip88MEHrsdRUVHo0aNHiCoOPtGBBmvXhqwMIiIiIiKisKb6PegtUVBQgIKCAgCO8x7dzZs3D9988w0AYOrUqRg0aFCjyzty5Ageeugh/OlPf8KkSZOQlZUFs9mMxYsXo6yszDXu1ltvRVxcXADXRFk1Nb6fGzkydHUQERERERGFs7Bu0Dds2IBXXnnF63PuV1nPzs72q0F3On78ON577z2vz40aNQqvv/560wpVMdEVCrZuDV0dpH7+HDZEkYv5IBHmg0SYDxJhPkhEi/nQXsUKuv3225GYmIhly5Zh+/btOHnyJCorK5GQkICcnBxMmzYNt912W6PncWhJneDW5wMGhK4OUjeTyYTJkycrXQapFPNBIswHiTAfJMJ8kIhW86H6q7hHgsrKSsTHx3tcvU8tKiqA/93hxMP33wOXXx76ekidJEmC2WxGYmJioxf3oMjDfJAI80EizAeJMB8kooV8eOsD1Vkpqcb5895/z+ac3EmShOLiYp+3uqDIxnyQCPNBIswHiTAfJKLVfHAPugqoeQ/61q1A/dPzN28GhgxRph4iIiIiIqJwwD3o1GT79zf8HZtzqk+SJBw+fFhz31BSaDAfJMJ8kAjzQSLMB4loNR9s0EmoUyfglluAoUMlxMfXYswYbQWcQsNut6OoqAh2u13pUkiFmA8SYT5IhPkgEeaDRLSaD17FnYRGjnT8sVrtyM//FuPH54Hf6xAREREREQUeOy1qEpNJ6QqIiIiIiIjCExt0IiIiIiIiIhVgg05ERERERESkAmzQiYiIiIiIiFSADTr5RafTISkpCTqdTulSSIWYDxJhPkiE+SAR5oNEmA8S0Wo+dLIsy0oXEem83aCeiIiIiIiIwpe3PpB70MkvdrsdJSUlmruPIIUG80EizAeJMB8kwnyQCPNBIlrNBxt08pvFYlG6BFIx5oNEmA8SYT5IhPkgEeaDRLSYDx7irgI8xJ2IiIiIiCiy8BB3aja73Y6ffvpJc4eIUGgwHyTCfJAI80EizAeJMB8kotV8sEEnv0iShCNHjkCSJKVLIRViPkiE+SAR5oNEmA8SYT5IRKv5YINOREREREREpAJs0ImIiIiIiIhUgA06ERERERERkQqwQSciIiIiIiJSAaPSBRDgvNNdZWWlwpX4ZrVaUV1djcrKSphMJqXLIZVhPkiE+SAR5oNEmA8SYT5IRAv5cPZ/7nc+Z4OuAlVVVQCAtLQ0hSshIiIiIiKiUKqqqkJ8fDwAQCe7t+ukCEmScOzYMcTFxUGn0yldjleVlZVIS0tDaWkp2rZtq3Q5pDLMB4kwHyTCfJAI80EizAeJaCEfsiyjqqoKKSkp0OsdZ59zD7oK6PV6dO7cWeky/NK2bVvVBpyUx3yQCPNBIswHiTAfJMJ8kIja8+Hcc+7Ei8QRERERERERqQAbdCIiIiIiIiIVYINOfomOjsYzzzyD6OhopUshFWI+SIT5IBHmg0SYDxJhPkhEq/ngReKIiIiIiIiIVIB70ImIiIiIiIhUgA06ERERERERkQqwQSciIiIiIiJSATboJLRnzx7ceeedyMzMRHR0NBITEzF+/Hh89tlnSpdGCtPpdI3+OXr0qNJlUhAtXrwYM2fOxKBBgxAdHe0x977Y7XYsWLAAI0aMQEJCAmJiYtC9e3c88MADOH78eAirp2Braj5mz57d6Dbld7/7XYjXgoKhrKwM//jHP3DjjTciOzsbiYmJiIqKQseOHZGXl4cvvvjC6+u4/YgMzckHtx+Ro6amBk888QQmTJiAzMxMxMXFwWQyITExEZdeeinmzp2LysrKBq/T1PZDJvJh2bJlcqtWrWQAXv9Mnz5dliRJ6TJJIb5y4f6ntLRU6TIpiC655BKfc++NxWKRJ0yY4PM17du3l7ds2RLitaBgaWo+nnnmmUa3KXfeeWeI14KCYe7cuY3O9d133+3xGm4/Ikdz8sHtR+QoLy9vdK579Oghnz592vUarW0/jE3q5ililJWVYdq0aaipqQEA9OnTB1OnTsWuXbvw6aefAgA+/PBDDB48GPfee6+SpZLCEhIS8MQTT3h9rl27dqEthkJKp9Oha9euGDRoEE6cOIE1a9YIxz/11FMoKCgAABgMBvz2t79Fp06d8MEHH+DIkSM4ffo0brjhBhQXF6N169ahWAUKoqbmw91NN92EQYMGNfh9v379AlkiKaxz587Iy8tDeno6du/ejYULF8JmswEAFixYgN/85jcYN24cAG4/IlFT8uGO24/wl5qaitzcXGRkZKB9+/Ywm834z3/+g8OHDwNwHAH89ttv49FHHwWgwe2H0t8QkDo98sgjrm+V4uLi5IqKCtdz06ZNcz2Xmpoq22w2BSslpTgzkJGRoXQppJDq6mrXz/X3XtR3+vRpjyNynnjiCddzJSUlsk6ncz03b968kNRPwdWUfNQf8/7774eoSlLCJ598In/yyScN/v3w0UcfeeTkD3/4gyzL3H5EmqbmQ5a5/SBZLisr88jHzJkzZVnW5vaD56CTV19//bXr59GjR6N9+/aux1OmTHH9XFZWhq1bt4a0NlKXEydOIC0tDSaTCQkJCRg5ciTmzZvn+pabwldMTIzfYwsKClxH5ACe25GePXsiOzvb9dh9+0Pa1ZR81PfUU0+hTZs2aNWqFbKysnDnnXdi165dAayOlHTzzTfj5ptvhsFg8Pj9tdde6/G4rq4OALcfkaap+aiP24/IYrfbUVZWhgULFnj8vm/fvgC0uf1gg04N1NbWYvfu3a7HWVlZHs/Xf7xjx46Q1EXqVFtbi6NHj8Jms+Hs2bP44YcfcM899+Dyyy+HxWJRujxSifrbCdF2hdsUKisrw4ULF1BbW4uDBw/ivffew4ABA7BkyRKlS6Mgcv+3BwAMHjwYALcf5OArH/Vx+xEZVq9eDZ1OB6PRiM6dO+PZZ591PTdq1CjXRQG1uP3gOejUwJkzZyDLsutx27ZtPZ6Pi4vzeGw2m0NSF6lPv379MGzYMHTu3BknTpzAJ598grNnzwIA1q5di2eeeQYvvfSSskWSKlRUVHg8Fm1XuE2JXG3atMH48ePRvXt3REdHY926dVi9ejUAx5eB06dPx4gRI5CcnKxsoRRwFy5cwD333ON63KNHD9x4440AuP0gcT6cuP0gAJg2bRoWLFiAVq1aAdDm9oMNOjXg3pz781h0SyUKX7/88gt69erl8bsnn3wSOTk5KC8vBwB88MEHePHFF5kRatJ2hXmJTHfccQceffTRBofGP/nkk3jhhRcAAOfPn8fixYt5cdIwU15ejquvvhqFhYUAgI4dO2Lp0qWuf2Bz+xHZGssHwO1HJOratStefvll1NbW4vDhw1iyZAkqKirwySefYNu2bfj222+RkZGhye0HD3GnBtq3b+8R0KqqKo/n699b0P38dIoc9ZtzAEhJSfE4t6e8vFw130aSsjp06ODxWLRd4TYlMmVkZHg9b/3+++/3eMxzScPL3r17MXz4cGzatAkAkJaWhtWrV6NHjx6uMdx+RC5/8gFw+xGJ0tLS8Mc//hFPPvkk3n77bezatQudOnUCAJSUlODBBx8EoM3tBxt0aiA6Otpjw7d//36P5+s/5m0ryF39byb1em5mqOF2QrRd4TaFRLhNCR/r16/H8OHDXZ//nJwcbNy4scEXwNx+RCZ/89EU3H6Er+TkZAwbNsz12Hl6gxa3H0wpeXXVVVe5fl69erXH+RufffaZ6+eUlBSv95qk8PbOO+9g2bJlDZrxY8eOeVyEpVOnTqr5NpKUNWHCBERHR7sef/75566fd+7c6bFX4+qrrw5pbaS8qqoqPPzwwzh58mSD59544w2Px+5X3CXtWrx4McaNG+f690VeXh7WrVuH1NTUBmO5/Yg8TckHtx+RZcWKFa5TKd2ZzWZs3rzZ9dh5NLAWtx86uf6/sIkAHD16FH369HEdBtKnTx9MnToVO3fuxKJFi1zjXn/99QaHD1H4e/DBB/H6668jKysLEyZMQFpaGsrKyrBw4UKcOXPGNe7ZZ5/Fn//8ZwUrpWCaN2+e65vnDRs2YOPGja7nHn74YdfPTz75JBISEvDQQw/htddeAwAYDAbceeeduOiii/Dee+/h6NGjAID09HTs3LkTbdq0Cd2KUFA0JR86nQ4JCQmIiorC5Zdf7vri1/0iT4DjUMW9e/ciISEhNCtBQbF48WLcdNNNri95k5OT8Yc//KHBbbXS0tJw0003AQC3HxGkqfk4e/Ystx8R5Nprr8Xy5csxYcIEXHLJJYiNjUVZWRn+85//eHxJc9ttt+Ff//oXAA1uP0J833XSkK+//lqOjo6WAXj9c+utt8p2u13pMkkBDzzwgM9cOP/ceOONstVqVbpUCqLLLrus0RwAkA8ePCjLsixXV1fLl19+uc9x7dq1kzdv3qzsSlHANCUfZ86caXRcu3bt5DVr1ii9WhQAzzzzjF/ZuOyyy1yv4fYjcjQ1H9x+RJZrrrmm0fnOycmRT5065XqN1rYfPMSdfLrqqqtQVFSE22+/HWlpaYiKikJCQgLGjh2LhQsX4qOPPuK5PBHq8ccfx9tvv41rrrkGPXr0QHx8PEwmEzp16oSrrroKS5YswaJFi2A08kYR9KuYmBh8++23mDdvHoYPH462bdsiOjoaXbt2xX333Yfi4mIMGTJE6TJJAfHx8Vi9ejUefvhhDB48GKmpqYiKikLr1q1xySWX4NFHH8XOnTsxatQopUslhXD7Qb5w+xFZ7r33Xtx9993IyclBcnIyjEYjWrVqhYyMDFx11VV47733UFhYiKSkJNdrtLb94CHuRERERERERCrA3Z9EREREREREKsAGnYiIiIiIiEgF2KATERERERERqQAbdCIiIiIiIiIVYINOREREREREpAJs0ImIiIiIiIhUgA06ERERERERkQqwQSciIiIiIiJSATboRERERERERCrABp2IiChMfPDBB9DpdB5/Zs+erXRZqvD88897/H+ZMWNGwN9DkiT07NnT4302bNgQ8PchIqLwxQadiIiIwtrx48cxd+5c12O9Xo9HHnkk4O+j1+vx6KOPevzu/vvvhyzLAX8vIiIKT2zQiYiIVGj16tUN9obffvvtSpelSX/5y19w4cIF1+MbbrgB3bp1C8p73XbbbejcubPr8datW/Gf//wnKO9FREThx6h0AURERBQYffr0wQMPPODxu2HDhilUjTocP34c7777rsfv6v8/CiSTyYRZs2bhySefdP3u2WefxW9+85ugvScREYUPNuhERERhYsiQIRgyZIjSZajKP/7xD9TV1bked+nSBcOHDw/qe06dOtWjQf/555/x3//+F5dffnlQ35eIiLSPh7gTERFRWJIkCe+9957H76ZOnRr0983KysKgQYM8fvfOO+8E/X2JiEj72KATERGpyO233w6dTocxY8Y0eO7DDz8Unpfu71XcMzMzG4wDgFOnTuHhhx9Gt27dEBMTg/T0dNxxxx3Ys2ePx+s3bNiAKVOmICUlBa1atULXrl1x//3348SJE36t46ZNm3DfffchJycHiYmJiIqKQnJyMnJzczFnzhycPHnS//9hAmvWrMGxY8c8fnfdddcJX3Py5En85S9/wejRo5GSkoKYmBhER0cjJSUF/fr1w7XXXos5c+Zg5cqVHnvm67v++us9Hn/99dewWCzNXxkiIooIPMSdiIiIUFhYiMmTJ8NsNrt+V1paig8++AD/+c9/8NVXX2HMmDF48cUX8cQTT0CSJNe4AwcO4M0338Tnn3+ONWvWoHv37l7fw2w244477sA333zT4Lny8nKUl5dj48aNePnll/Haa6/hd7/7XYvWaeXKlR6Po6OjkZOT43P88uXLceONN+L8+fMNnjt+/DiOHz+On3/+GV999RUAYN26dRgxYoTXZdU/999isWDjxo0YO3ZsE9eCiIgiCfegExEREfLy8jyac3dVVVW45ZZb8MYbb+Cxxx7zaM7dHT9+HHfccYfX58xmM4YPH+61Oa/vwoULuOuuu/D3v//d/xXwYs2aNR6Pc3JyYDKZvI49c+YMpk2b5rU5b45BgwZBr/f8Z1b9eoiIiOrjHnQiIiIVmTBhAtq1a4ejR482uD1X7969MWHCBI/fBeqicBUVFejQoQOuvvpqVFRUYOnSpR737z5+/Ljr6uc9evTA6NGjUVxcjA0bNngsZ/369fjpp5/Qv39/j9/ffvvt2Ldvn8fvWrdujQkTJiA5ORm7d+/G6tWr/3979xfS9PfHcfylhoS5HKVSWoJMGKYhmJNGlpVkCBFRLEKiCCQIKi+CMuiqiDJJLG+66SK6iIQaBNqNUCKV22ysEi1MjSgCzVCz8k+z70U0/GzzX39+7ZfPx915+97O+Xj33nmf8zH8/fjx4yosLFRubu6cn2diYkJut9sQm273vL6+XgMDA4ZYamqqNm7cKLPZrOHhYXV3d+vp06caHByccX6TySSLxaLOzs5A7NGjR3N6BgDA/EOBDgBABCktLVVpaanu378fUqDn5+erpqbmj8y7YsUKud1uLV++XJJUUVGhysrKkLytW7fqzp07io2N1bdv37Rt2zY1NDQYcpqamgwFusvlUn19vSEnJydHjY2NSkxMDMScTqd27doV+GHg69evOnPmjJxO55yfp7+/X6Ojo4ZYUlLSlPmvX782jNPS0tTR0aG4uDhDfGJiQl6vV7du3ZLZbJ52DUlJSYYCPfg8PAAAwWhxBwAAqqioCBTn0vdCPJyLFy8qNjZWkhQVFaXdu3eH5Lx69cowDv6hQZKqq6sNxbn0/QI3m81miDU0NOjz58+zeobJent7Q2JLliyZMt9kMhnGIyMj6u/vD8mLjo5WXl6ezp07p+zs7GnXsHTp0hnXBADAZOygAwCAkNb5ZcuWheSkpKQoKyvLEJtc1P8wNDRkGLtcrpCc2b4TfGxsTF6vd8rL2KYS3K4uhRbhkwVf3tbb26v09HRlZmbKarXKarUqMzNTdrtdFotlVmtYvHjxjGsCAGAyCnQAAKCVK1caxgsXLpwxR1JgN32y4Evk+vr6fmltP/PatXDt58E/HEyWlZWl8vJyXbp0KRDz+/1qa2tTW1ubIXfVqlU6ceKE9u3bN+0ags+qz9QSDwAALe4AACCkIP/xbvTpcv5XfuZm9eD2eUn68OHDtJ+pqalRXV2dCgoKFBMTM2Vee3u79u/fr6qqqmm/L3i+6c7AAwAgsYMOAAD+sOTkZHV0dBhiZWVlWrRo0aw+n5mZOec5ExMTFRsbq7GxsUBsNjv5DodDDodDg4OD8vl8evHihV6+fCmPx6OmpibDzfanT59WeXl52C4CKfTMeUpKypyfAwAwv1CgAwAQgcLt4Pr9/r+wkl9ns9lC3gFeXFwsh8Mx42f9fv+0u9lTiYmJUV5enuE1cD6fb9afT0hIUGFhoQoLCwOxU6dO6ezZs4Hx8PCw2tvbw76+bWhoSN3d3YaY3W6f/QMAAOYlWtwBAIhA8fHxIbH29va/sJJft3PnzpDY4cOH1draGjZ/fHxc9+7d08GDB7Vjx46fnnfDhg2G8ZMnTww76pO5XC4dPXpULpcr5Az9D+HOwge/yu0Hj8cT8j2Ti30AAMJhBx0AgAiUkZGhqKgoQ0u11+vVunXrlJOTE2irPnbsWNjL2yKJ3W5XSUmJ7t69G4j19vbKZrPJZrPJarUqISFBg4OD6urq0rNnzwLnzn+lqN20aZPOnz8fGI+Ojsrn8yk/Pz8k9+PHj6qtrVVtba3MZrNWr16t9PR0mUwmffnyRV6vN2QHPjo6esob3YNvrl+4cCE76ACAGVGgAwAQgUwmkwoKCtTc3GyIP3z40NC2vXfv3ogv0CXp2rVrstvt6urqMsQ9Ho88Hs8fmXPz5s1KTk42nAV3Op1hC/TJBgYG1NzcHPK/D+ZwOMJeRidJt2/fNoy3b9+uuLi4Wa4cADBf0eIOAECEqqys/Gs3p/9uSUlJamlpmVPLelxcnNavX//Tcy5YsEAHDhwwxG7evBk2N9yt9dMpKirSlStXwv6tq6tLjx8/NsTKysrm9P0AgPmJHXQAACKU3W6X2+1WVVWVmpub9e7duynPPP8/SExMlNPplM/n0/Xr1/XgwQP19PRoYGBA0dHRMpvNslgsysnJUVFRkYqLi8OexZ+LI0eOqLq6WuPj45Kknp4etbS0aO3atYa8oqIitbW1qbGxUW63W52dnerr69P79+81MjKi+Ph4paWlac2aNXI4HCopKZlyzhs3bhjG2dnZ2rJlyy89BwBgfoj6NvlwGwAAwD/m0KFDht3uPXv2hBTRv8vY2JgsFovevHkTiNXV1c3qxnoAACjQAQDAP+3t27eyWq369OmTpO+vYHv+/LkyMjJ++1xXr141tLPn5uaqtbV1zi30AID5iTPoAADgn5aamqqTJ08Gxn6/X5WVlb99nomJCV24cMEQu3z5MsU5AGDW2EEHAAAAACACsIMOAAAAAEAEoEAHAAAAACACUKADAAAAABABKNABAAAAAIgAFOgAAAAAAEQACnQAAAAAACLAf7zdnTmNXURYAAAAAElFTkSuQmCC", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot = Plotting(QS)\n", "plot.PlotFigureSize = (10,5)\n", "plot.PlotFontSize = 20\n", "plot.PlottingMulti([t,t],[signal_Z1,signal_Z2],\"time (s)\",\"Mz\",[\"green\",\"blue\"])" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 4 }