Spherical Tensors Product Operators (Two Spin Half)
Author: Vineeth Francis Thalakottoor
Email: vineeth.thalakottoor@ens.psl.eu or vineethfrancis.physics@gmail.com
[1]:
# Define the source path
SourcePath = '/media/HD2/Vineeth/PostDoc_Simulations/Github/PyOR_V1/PyOR_Combined/PyOR/Source_Doc'
# Add source path
import sys
sys.path.append(SourcePath)
import time
%matplotlib ipympl
# Import PyOR package
from PyOR_QuantumSystem import QuantumSystem as QunS
from PyOR_Hamiltonian import Hamiltonian
from PyOR_DensityMatrix import DensityMatrix
from PyOR_QuantumObject import QunObj
from PyOR_HardPulse import HardPulse
from PyOR_Basis import Basis
from PyOR_Evolution import Evolutions
from PyOR_Plotting import Plotting
import PyOR_SignalProcessing as Spro
from PyOR_Commutators import Commutators
from PyOR_QuantumLibrary import QuantumLibrary
from PyOR_Relaxation import RelaxationProcess
[2]:
# Define the spin system
Spin_list = {"A" : "H1","B" : "H1"}
QS = QunS(Spin_list,PrintDefault=False)
# initialize the system
QS.Initialize()
Product Operator Basis: Spherical Tensors
[3]:
BS = Basis(QS)
Basis_ST, coherence_ST, Dic_ST = BS.ProductOperators_SphericalTensor()
[4]:
coherence_ST
[4]:
[-2, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2]
[5]:
Dic_ST
[5]:
['T(1,-1)T(1,-1)',
'T(0,0)T(1,-1)',
'T(1,-1)T(0,0)',
'T(1,-1)T(1,0)',
'T(1,0)T(1,-1)',
'T(0,0)T(0,0)',
'T(0,0)T(1,0)',
'T(1,-1)T(1,1)',
'T(1,0)T(0,0)',
'T(1,0)T(1,0)',
'T(1,1)T(1,-1)',
'T(0,0)T(1,1)',
'T(1,0)T(1,1)',
'T(1,1)T(0,0)',
'T(1,1)T(1,0)',
'T(1,1)T(1,1)']
[6]:
Basis_ST[0].matrix
[6]:
$\displaystyle \left[\begin{matrix}0 & 0 & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0\\1.0 & 0 & 0 & 0\end{matrix}\right]$
[7]:
Basis_ST[1].matrix
[7]:
$\displaystyle \left[\begin{matrix}0 & 0 & 0 & 0\\0.707106781186547 & 0 & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & 0.707106781186547 & 0\end{matrix}\right]$
[8]:
Basis_ST[2].matrix
[8]:
$\displaystyle \left[\begin{matrix}0 & 0 & 0 & 0\\0 & 0 & 0 & 0\\0.707106781186547 & 0 & 0 & 0\\0 & 0.707106781186547 & 0 & 0\end{matrix}\right]$
[9]:
Basis_ST[3].matrix
[9]:
$\displaystyle \left[\begin{matrix}0 & 0 & 0 & 0\\0 & 0 & 0 & 0\\0.707106781186547 & 0 & 0 & 0\\0 & -0.707106781186547 & 0 & 0\end{matrix}\right]$
String Index
[10]:
B_ST = BS.String_to_Matrix(Dic_ST, Basis_ST)
['T(1,-1)T(1,-1)', 'T(0,0)T(1,-1)', 'T(1,-1)T(0,0)', 'T(1,-1)T(1,0)', 'T(1,0)T(1,-1)', 'T(0,0)T(0,0)', 'T(0,0)T(1,0)', 'T(1,-1)T(1,1)', 'T(1,0)T(0,0)', 'T(1,0)T(1,0)', 'T(1,1)T(1,-1)', 'T(0,0)T(1,1)', 'T(1,0)T(1,1)', 'T(1,1)T(0,0)', 'T(1,1)T(1,0)', 'T(1,1)T(1,1)']
[11]:
B_ST['T(1,-1)T(1,-1)'].matrix
[11]:
$\displaystyle \left[\begin{matrix}0 & 0 & 0 & 0\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0\\1.0 & 0 & 0 & 0\end{matrix}\right]$