Spherical Tensors Product Operators (Spin One)

[1]:
# Define the source path
SourcePath = '/media/HD2/Vineeth/PostDoc_Simulations/Github/PyOR_V1/PyOR_Combined/PyOR/Source_Doc'

# Add source path
import sys
sys.path.append(SourcePath)
import time
%matplotlib ipympl

# Import PyOR package
from PyOR_QuantumSystem import QuantumSystem as QunS
from PyOR_Hamiltonian import Hamiltonian
from PyOR_DensityMatrix import DensityMatrix
from PyOR_QuantumObject import QunObj
from PyOR_HardPulse import HardPulse
from PyOR_Basis import Basis
from PyOR_Evolution import Evolutions
from PyOR_Plotting import Plotting
import PyOR_SignalProcessing as Spro
from PyOR_Commutators import Commutators
from PyOR_QuantumLibrary import QuantumLibrary
from PyOR_Relaxation import RelaxationProcess
[2]:
# Define the spin system
Spin_list = {"A" : "H2"}
QS = QunS(Spin_list,PrintDefault=False)

# initialize the system
QS.Initialize()

Product Operator Basis: Spherical Tensors

[3]:
BS = Basis(QS)

Basis_ST, coherence_ST, Dic_ST = BS.ProductOperators_SphericalTensor()
[4]:
coherence_ST
[4]:
[0, -1, 0, 1, -2, -1, 0, 1, 2]
[5]:
Dic_ST
[5]:
['T(0,0)',
 'T(1,-1)',
 'T(1,0)',
 'T(1,1)',
 'T(2,-2)',
 'T(2,-1)',
 'T(2,0)',
 'T(2,1)',
 'T(2,2)']
[6]:
OpB_ST = BS.String_to_Matrix(Dic_ST, Basis_ST)
['T(0,0)', 'T(1,-1)', 'T(1,0)', 'T(1,1)', 'T(2,-2)', 'T(2,-1)', 'T(2,0)', 'T(2,1)', 'T(2,2)']
[7]:
OpB_ST['T(0,0)'].matrix
[7]:
$\displaystyle \left[\begin{matrix}0.577350269189626 & 0 & 0\\0 & 0.577350269189626 & 0\\0 & 0 & 0.577350269189626\end{matrix}\right]$
[8]:
OpB_ST['T(1,-1)'].matrix
[8]:
$\displaystyle \left[\begin{matrix}0 & 0 & 0\\0.707106781186548 & 0 & 0\\0 & 0.707106781186548 & 0\end{matrix}\right]$
[9]:
OpB_ST['T(2,-2)'].matrix
[9]:
$\displaystyle \left[\begin{matrix}0 & 0 & 0\\0 & 0 & 0\\1.0 & 0 & 0\end{matrix}\right]$